📄 toric_spline.cpp
字号:
#if !defined(__toric_spline_cpp)
#define __toric_spline_cpp
//Difinition of toric_spline class 980818
#include <math.h>
#pragma hdrstop
#include "toric_spline.h"
#include "recipe_sp2.h"
////Construcor and destructor
toric_spline::toric_spline(){
Radius1=153.;
Radius2=47.13;
aaa=3.019e-7;
bbb=1.27e-6;
initial();
splie2(data_x,data_y,data_z,nx,ny,data_z2a);
};
toric_spline::toric_spline( double r1,double r2, double a,double b){
Radius1=r1;
Radius2=r2;
aaa=a;
bbb=b;
initial();
splie2(data_x,data_y,data_z,nx,ny,data_z2a);
};
toric_spline::~toric_spline(){
final();
};
inline void toric_spline::SetRadius1(double r ){Radius1=r;};
inline double toric_spline::GetRadius1(){return(Radius1);} ;
inline void toric_spline::SetRadius2(double r ){Radius2=r;};
inline double toric_spline::GetRadius2() {return(Radius2);};
inline void toric_spline::SetCoeffA(double a ){aaa=a;};
inline double toric_spline::GetCoeffA() {return(aaa);};
inline void toric_spline::SetCoeffB(double b ){bbb=b;};
inline double toric_spline::GetCoeffB(){return(bbb);};
inline double toric_spline::GetZ( double x, double y){
double t;
double r1 = Radius1;
double r2 = Radius2;
double a = aaa;
double b = bbb;
double c;
splin2(data_x,data_y,data_z,data_z2a,nx,ny,x,y,&c);
double ta= sqrt(1-y*y/r2/r2);
double tb= sqrt((r1-y*y/(r2*(1+ta)))*(r1-y*y/(r2*(1+ta)))-x*x);
t = c+r1+(a*x*x+b*y*y)*y*y-tb;
//t= r1+(a*x*x+b*y*y)*y*y-tb;
//t=c;
return t;
//z=0 ,when x=y=0.
};
inline vector toric_spline::GetPosition( double x, double y){
return ( vector( x, y, GetZ(x,y) ) );
};
inline double toric_spline::gradX(double x, double y){
double t;
double r1 = Radius1;
double r2 = Radius2;
double a = aaa;
double b = bbb;
double c;
dx_splin2(data_x,data_y, data_z,data_z2a, nx, ny, x, y,&c);
double ta= sqrt(1-y*y/r2/r2);
double tb= sqrt((r1-y*y/(r2*(1+ta)))*(r1-y*y/(r2*(1+ta)))-x*x);
t = c+2*a*x*y*y+x/tb;
//t = 2*a*x*y*y+x/tb;
//t=c;
//z=0 ,when x=y=0.
return t;
};
inline double toric_spline::gradY(double x, double y){
double t;
double r1 = Radius1;
double r2 = Radius2;
double a = aaa;
double b = bbb;
double c;
dy_splin2(data_x,data_y, data_z,data_z2a, nx, ny, x, y,&c);
double ta= sqrt(1-y*y/r2/r2);
double tb= sqrt((r1-y*y/(r2*(1+ta)))*(r1-y*y/(r2*(1+ta)))-x*x);
t = c+2*a*x*x*y+4*b*y*y*y+y*(-y*y+r1*r2*(1+ta))*(-y*y+2*r2*r2*(1+ta))/(r2*r2*r2*r2*ta*(1+ta)*(1+ta)*(1+ta)*tb);
//t = 2*a*x*x*y+4*b*y*y*y+y*(-y*y+r1*r2*(1+ta))*(-y*y+2*r2*r2*(1+ta))/(r2*r2*r2*r2*ta*(1+ta)*(1+ta)*(1+ta)*tb);
//t=c;
//z=0 ,when x=y=0.
return t;
};
inline double toric_spline::gradXX(double x, double y){
return 0.00001;
};
inline double toric_spline::gradYY(double x, double y){
return 0.00001;
};
// This is the normal vector of surface on the point(x,y).
// This is toward the inside of toric_spline.
// This.length is 1.
vector toric_spline::NormalVector ( double x, double y){
return ( vector( -gradX(x,y), -gradY(x,y), 1).normalize() ); //OK 980520
};
vector toric_spline::NormalVector ( vector position){
return ( NormalVector( position.getX(), position.getY() ) );
};
////GradientVector////////////////////////////////////////////
// This is one of tangential vactors on the tangential plane.
// This is toward direction which has the largest gradient.
// This length is 1.
vector toric_spline::GradientVector(double x, double y){
double gx = gradX( x,y);
double gy = gradY( x,y);
return ( vector( gx, gy, gx*gx+gy*gy ).normalize() );
};
vector toric_spline::GradientVector( vector position){
return( GradientVector( position.getX(), position.getY() ) );
};
////NoGradientVector///////////////////////////////////////////
// This is one of tangential vactors on the tangential plane.
// This is toward direction which has no gradient.
//// This length will be 1,
//// and this Z-coordinate will be Zero.
vector toric_spline::NoGradientVector(double x,double y){
return( NormalVector(x,y)%GradientVector(x,y) );
};
vector toric_spline::NoGradientVector(vector position){
return( NormalVector(position)%GradientVector(position) );
};
int toric_spline::WriteFaceName(ofstream& fout){
fout << "(Face name is : toric_spline);" << endl;
return(1);
};
int toric_spline::WriteParameters(ofstream& fout){
fout << "(Radius1[mm] is :" << Radius1 <<");" << endl;
fout << "(Radius2[mm] is :" << Radius2 <<");" << endl;
fout << "(A is :" << aaa <<");" << endl;
fout << "(B is :" << bbb <<");" << endl;
return(1);
};
void toric_spline::SetParameter(TStringList *str)
{
for (int i=0; i<str->Count; i++){
AnsiString temp;
temp = "Radius1";
if (str->Names[i]==temp){
Radius1 = str->Values[str->Names[i]].ToDouble();
};
temp = "Radius2";
if (str->Names[i]==temp){
Radius2 = str->Values[str->Names[i]].ToDouble();
};
temp = "aaa";
if (str->Names[i]==temp){
aaa = str->Values[str->Names[i]].ToDouble();
};
temp = "bbb";
if (str->Names[i]==temp){
bbb = str->Values[str->Names[i]].ToDouble();
};
//isConcave
};
face::SetFaceParameter(str);
};
void toric_spline::GetParameter(TStringList *str)
{
str->Add(AnsiString("---toric_spline parameter(s)---"));
str->Add(AnsiString("FaceType=toric_spline"));
str->Add(AnsiString("Radius1=")+ Radius1);
str->Add(AnsiString("Radius2=")+ Radius2);
str->Add(AnsiString("aaa=")+ AnsiString(aaa) );
str->Add(AnsiString("bbb=")+ AnsiString(bbb) );
str->Add(AnsiString("+Spline") );
face::GetFaceParameter(str);
};
#endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -