⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 agg_math.h.svn-base

📁 okular
💻 SVN-BASE
字号:
//----------------------------------------------------------------------------// Anti-Grain Geometry - Version 2.3// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)//// Permission to copy, use, modify, sell and distribute this software // is granted provided this copyright notice appears in all copies. // This software is provided "as is" without express or implied// warranty, and with no claim as to its suitability for any purpose.////----------------------------------------------------------------------------// Contact: mcseem@antigrain.com//          mcseemagg@yahoo.com//          http://www.antigrain.com//----------------------------------------------------------------------------#ifndef AGG_MATH_INCLUDED#define AGG_MATH_INCLUDED#include <math.h>#include "agg_basics.h"namespace agg{    const double intersection_epsilon = 1.0e-8;    //------------------------------------------------------calc_point_location    AGG_INLINE double calc_point_location(double x1, double y1,                                           double x2, double y2,                                           double x,  double y)    {        return (x - x2) * (y2 - y1) - (y - y2) * (x2 - x1);    }    //--------------------------------------------------------point_in_triangle    AGG_INLINE bool point_in_triangle(double x1, double y1,                                       double x2, double y2,                                       double x3, double y3,                                       double x,  double y)    {        bool cp1 = calc_point_location(x1, y1, x2, y2, x, y) < 0.0;        bool cp2 = calc_point_location(x2, y2, x3, y3, x, y) < 0.0;        bool cp3 = calc_point_location(x3, y3, x1, y1, x, y) < 0.0;        return cp1 == cp2 && cp2 == cp3 && cp3 == cp1;    }    //-----------------------------------------------------------calc_distance    AGG_INLINE double calc_distance(double x1, double y1, double x2, double y2)    {        double dx = x2-x1;        double dy = y2-y1;        return sqrt(dx * dx + dy * dy);    }    //------------------------------------------------calc_point_line_distance    AGG_INLINE double calc_point_line_distance(double x1, double y1,                                                double x2, double y2,                                                double x,  double y)    {        double dx = x2-x1;        double dy = y2-y1;        return ((x - x2) * dy - (y - y2) * dx) / sqrt(dx * dx + dy * dy);    }    //-------------------------------------------------------calc_intersection    AGG_INLINE bool calc_intersection(double ax, double ay, double bx, double by,                                      double cx, double cy, double dx, double dy,                                      double* x, double* y)    {        double num = (ay-cy) * (dx-cx) - (ax-cx) * (dy-cy);        double den = (bx-ax) * (dy-cy) - (by-ay) * (dx-cx);        if(fabs(den) < intersection_epsilon) return false;        double r = num / den;        *x = ax + r * (bx-ax);        *y = ay + r * (by-ay);        return true;    }    //--------------------------------------------------------calc_orthogonal    AGG_INLINE void calc_orthogonal(double thickness,                                    double x1, double y1,                                    double x2, double y2,                                    double* x, double* y)    {        double dx = x2 - x1;        double dy = y2 - y1;        double d = sqrt(dx*dx + dy*dy);         *x = thickness * dy / d;        *y = thickness * dx / d;    }    //--------------------------------------------------------dilate_triangle    AGG_INLINE void dilate_triangle(double x1, double y1,                                    double x2, double y2,                                    double x3, double y3,                                    double *x, double* y,                                    double d)    {        double dx1=0.0;        double dy1=0.0;         double dx2=0.0;        double dy2=0.0;         double dx3=0.0;        double dy3=0.0;         double loc = calc_point_location(x1, y1, x2, y2, x3, y3);        if(fabs(loc) > intersection_epsilon)        {            if(calc_point_location(x1, y1, x2, y2, x3, y3) > 0.0)             {                d = -d;            }            calc_orthogonal(d, x1, y1, x2, y2, &dx1, &dy1);            calc_orthogonal(d, x2, y2, x3, y3, &dx2, &dy2);            calc_orthogonal(d, x3, y3, x1, y1, &dx3, &dy3);        }        *x++ = x1 + dx1;  *y++ = y1 - dy1;        *x++ = x2 + dx1;  *y++ = y2 - dy1;        *x++ = x2 + dx2;  *y++ = y2 - dy2;        *x++ = x3 + dx2;  *y++ = y3 - dy2;        *x++ = x3 + dx3;  *y++ = y3 - dy3;        *x++ = x1 + dx3;  *y++ = y1 - dy3;    }    //-------------------------------------------------------calc_polygon_area    template<class Storage> double calc_polygon_area(const Storage& st)    {        unsigned i;        double sum = 0.0;        double x  = st[0].x;        double y  = st[0].y;        double xs = x;        double ys = y;        for(i = 1; i < st.size(); i++)        {            const typename Storage::value_type& v = st[i];            sum += x * v.y - y * v.x;            x = v.x;            y = v.y;        }        return (sum + x * ys - y * xs) * 0.5;    }    //------------------------------------------------------------------------    // Tables for fast sqrt    extern int16u g_sqrt_table[1024];    extern int8   g_elder_bit_table[256];    //---------------------------------------------------------------fast_sqrt    //Fast integer Sqrt - really fast: no cycles, divisions or multiplications    #if defined(_MSC_VER)    #pragma warning(push)    #pragma warning(disable : 4035) //Disable warning "no return value"    #endif    AGG_INLINE unsigned fast_sqrt(unsigned val)    {    #if defined(_M_IX86) && defined(_MSC_VER) && !defined(AGG_NO_ASM)        //For Ix86 family processors this assembler code is used.         //The key command here is bsr - determination the number of the most         //significant bit of the value. For other processors        //(and maybe compilers) the pure C "#else" section is used.        __asm        {            mov ebx, val            mov edx, 11            bsr ecx, ebx            sub ecx, 9            jle less_than_9_bits            shr ecx, 1            adc ecx, 0            sub edx, ecx            shl ecx, 1            shr ebx, cl    less_than_9_bits:            xor eax, eax            mov  ax, g_sqrt_table[ebx*2]            mov ecx, edx            shr eax, cl        }    #else        //This code is actually pure C and portable to most         //arcitectures including 64bit ones.         unsigned t = val;        int bit=0;        unsigned shift = 11;        //The following piece of code is just an emulation of the        //Ix86 assembler command "bsr" (see above). However on old        //Intels (like Intel MMX 233MHz) this code is about twice         //faster (sic!) then just one "bsr". On PIII and PIV the        //bsr is optimized quite well.        bit = t >> 24;        if(bit)        {            bit = g_elder_bit_table[bit] + 24;        }        else        {            bit = (t >> 16) & 0xFF;            if(bit)            {                bit = g_elder_bit_table[bit] + 16;            }            else            {                bit = (t >> 8) & 0xFF;                if(bit)                {                    bit = g_elder_bit_table[bit] + 8;                }                else                {                    bit = g_elder_bit_table[t];                }            }        }        //This is calculation sqrt itself.        bit -= 9;        if(bit > 0)        {            bit = (bit >> 1) + (bit & 1);            shift -= bit;            val >>= (bit << 1);        }        return g_sqrt_table[val] >> shift;    #endif    }    #if defined(_MSC_VER)    #pragma warning(pop)    #endif}#endif

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -