⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 8614.htm

📁 C++细节解释
💻 HTM
字号:
<HTML>
<HEAD>
<meta http-equiv='Content-Type' content='text/html; charset=gb2312'>


<style >
.fst{padding:0px 15px;width:770px;border-left:0px solid #000000;border-right:0px solid #000000}
.fstdiv3 img{border:0px;border-right:8px solid #eeeecc;border-top:6px solid #eeeecc}
</style>
<title>
Effective C++ 2e Item8
</title>
</HEAD>
<BODY >
<center>

<div align=center><div class=fst align=left><div class=fstdiv3 id=print2>
<b>
Effective C++ 2e Item8</b><p>条款8. 写operator new和operator delete时要遵循常规</p>  
<p>自己重写operator new时(条款10解释了为什么有时要重写它),很重要的一点是函数提供的行为要和系统缺省的operator new一致。实际做起来也就是:要有正确的返回值;可用内存不够时要调用出错处理函数(见条款7);处理好0字节内存请求的情况。此外,还要避免不小心隐藏了标准形式的new,不过这是条款9的话题。</p>  
<p>有关返回值的部分很简单。如果内存分配请求成功,就返回指向内存的指针;如果失败,则遵循条款7的规定抛出一个std::bad_alloc类型的异常。</p>  
<p>但事情也不是那么简单。因为operator new实际上会不只一次地尝试着去分配内存,它要在每次失败后调用出错处理函数,还期望出错处理函数能想办法释放别处的内存。只有在指向出错处理函数的指针为空的情况下,operator new才抛出异常。</p>  
<p>另外,c++标准要求,即使在请求分配0字节内存时,operator new也要返回一个合法指针。(实际上,这个听起来怪怪的要求确实给c++语言其它地方带来了简便)</p>  
<p>这样,非类成员形式的operator new的伪代码看起来会象下面这样:<br>void * operator new(size_t size)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; // operator new还可能有其它参数<br>{&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </p>  
<p>&nbsp; if (size == 0) {&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; // 处理0字节请求时,<br>&nbsp;&nbsp;&nbsp; size = 1;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; // 把它当作1个字节请求来处理<br>&nbsp; }&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <br>&nbsp; while (1) {<br>&nbsp;&nbsp;&nbsp; 分配size字节内存;</p>  
<p>&nbsp;&nbsp;&nbsp; if (分配成功)<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; return (指向内存的指针);</p>  
<p>&nbsp;&nbsp;&nbsp; // 分配不成功,找出当前出错处理函数<br>&nbsp;&nbsp;&nbsp; new_handler globalhandler = set_new_handler(0);<br>&nbsp;&nbsp;&nbsp; set_new_handler(globalhandler);</p>  
<p>&nbsp;&nbsp;&nbsp; if (globalhandler) (*globalhandler)();<br>&nbsp;&nbsp;&nbsp; else throw std::bad_alloc();<br>&nbsp; }<br>}</p>  
<p>处理零字节请求的技巧在于把它作为请求一个字节来处理。这看起来也很怪,但简单,合法,有效。而且,你又会多久遇到一次零字节请求的情况呢?</p>  
<p>你又会奇怪上面的伪代码中为什么把出错处理函数置为0后又立即恢复。这是因为没有办法可以直接得到出错处理函数的指针,所以必须通过调用set_new_handler来找到。办法很笨但也有效。</p>  
<p>条款7提到operator new内部包含一个无限循环,上面的代码清楚地说明了这一点——while (1)将导致无限循环。跳出循环的唯一办法是内存分配成功或出错处理函数完成了条款7所描述的事件中的一种:得到了更多的可用内存;安装了一个新的new-handler(出错处理函数);卸除了new-handler;抛出了一个std::bad_alloc或其派生类型的异常;或者返回失败。现在明白了为什么new-handler必须做这些工作中的一件。如果不做,operator new里面的循环就不会结束。</p>  
<p>很多人没有认识到的一点是operator new经常会被子类继承。这会导致某些复杂性。上面的伪代码中,函数会去分配size字节的内存(除非size为0)。size很重要,因为它是传递给函数的参数。但是大多数针对类所写的operator new(包括条款10中的那种)都是只为特定的类设计的,不是为所有的类,也不是为它所有的子类设计的。这意味着,对于一个类x的operator new来说,函数内部的行为在涉及到对象的大小时,都是精确的sizeof(x):不会大也不会小。但由于存在继承,基类中的operator new可能会被调用去为一个子类对象分配内存:<br>class base {<br>public:<br>&nbsp; static void * operator new(size_t size);<br>&nbsp; ...<br>};</p>  
<p>class derived: public base&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; // derived类没有声明operator new<br>{ ... };&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; // </p>  
<p>derived *p = new derived;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; // 调用base::operator new</p>  
<p>如果base类的operator new不想费功夫专门去处理这种情况——这种情况出现的可能性不大——那最简单的办法是把这个“错误”数量的内存分配请求转给标准operator new来处理,象下面这样:<br>void * base::operator new(size_t size)<br>{<br>&nbsp; if (size != sizeof(base))&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; // 如果数量“错误”,让标准operator new<br>&nbsp;&nbsp;&nbsp; return ::operator new(size);&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; // 去处理这个请求<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; // </p>  
<p>&nbsp; ...&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; // 否则处理这个请求<br>}</p>  
<p>“停!”我听见你在叫,“你忘了检查一种虽然不合理但是有可能出现的一种情况——size有可能为零!”是的,我没检查,但拜托下次再叫出声的时候不要这么文绉绉的。:)但实际上检查还是做了,只不过融合到size != sizeof(base)语句中了。c++标准很怪异,其中之一就是规定所以独立的(freestanding)类的大小都是非零值。所以sizeof(base)永远不可能是零(即使base类没有成员),如果size为零,请求会转到::operator new,由它来以一种合理的方式对请求进行处理。(有趣的是,如果base不是独立的类,sizeof(base)有可能是零,详细说明参见"my article on counting objects")。</p>  
<p>如果想控制基于类的数组的内存分配,必须实现operator new的数组形式——operator new[](这个函数常被称为“数组new”,因为想不出"operator new[]")该怎么发音)。写operator new[]时,要记住你面对的是“原始”内存,不能对数组里还不存在的对象进行任何操作。实际上,你甚至还不知道数组里有多少个对象,因为不知道每个对象有多大。基类的operator new[]会通过继承的方式被用来为子类对象的数组分配内存,而子类对象往往比基类要大。所以,不能想当然认为base::operator new[]里的每个对象的大小都是sizeof(base),也就是说,数组里对象的数量不一定就是(请求字节数)/sizeof(base)。关于operator new[]的详细介绍参见条款m8。</p>  
<p>重写operator new(和operator new[])时所有要遵循的常规就这些。对于operator delete(以及它的伙伴operator delete[]),情况更简单。所要记住的只是,c++保证删除空指针永远是安全的,所以你要充分地应用这一保证。下面是非类成员形式的operator delete的伪代码:<br>void operator delete(void *rawmemory)<br>{<br>&nbsp; if (rawmemory == 0) return;&nbsp;&nbsp;&nbsp; 
file://如果指针为空,返回<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; // </p>  
<p>&nbsp; 释放rawmemory指向的内存;</p>  
<p>&nbsp; return;<br>}</p>  
<p>这个函数的类成员版本也简单,只是还必须检查被删除的对象的大小。假设类的operator new将“错误”大小的分配请求转给::operator new,那么也必须将“错误”大小的删除请求转给::operator delete:</p>  
<p>class base {&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; // 和前面一样,只是这里声明了<br>public:&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; // operator delete<br>&nbsp; static void * operator new(size_t size);<br>&nbsp; static void operator delete(void *rawmemory, size_t size);<br>&nbsp; ...<br>};</p>  
<p>void base::operator delete(void *rawmemory, size_t size)<br>{<br>&nbsp; if (rawmemory == 0) return;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; // 检查空指针</p>  
<p>&nbsp; if (size != sizeof(base)) {&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; // 如果size"错误",<br>&nbsp;&nbsp;&nbsp; ::operator delete(rawmemory);&nbsp; // 让标准operator来处理请求<br>&nbsp;&nbsp;&nbsp; return;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <br>&nbsp; }</p>  
<p>&nbsp; 释放指向rawmemory的内存;</p>  
<p>&nbsp; return;<br>}</p>  
<p>可见,有关operator new和operator delete(以及他们的数组形式)的规定不是那么麻烦,重要的是必须遵守它。只要内存分配程序支持new-handler函数并正确地处理了零内存请求,就差不多了;如果内存释放程序又处理了空指针,那就没其他什么要做的了。至于在类成员版本的函数里增加继承支持,那将很快就可以完成。<br>  
</p>  
</DIV></div></div>  
  
</center></BODY></HTML>  

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -