📄 拟牛顿法编写无约束优化程序 .txt
字号:
拟牛顿法编写无约束优化程序 [莫名 发表于 2006-4-17 10:22:52]
function [x,OPTIONS] = fminu(FUN,x,OPTIONS,GRADFUN,varargin)
%多元函数极值拟牛顿法,适用于光滑函数优化?
%x=fminu('fun',x0)牛顿法求多元函数y=f(x)在x0出发的局部极小值点?
% 这里 x,x0均为向量。
%x=fminu('fun',x0,options)输入options是优化中算法参数向量设置,
% 用help foptions可看到各分量的含义。
%x=fminu('fun',x0,options,'grad') grad给定f(x)的梯度函数表达式?杉涌旒扑闼俣取?
%x=fminu('fun',x0,options,'grad',p1,p2…)p1,p2,..是表示fun的M函数中的参数。
%例题 求f(x)=100(x2-x1^2)^2+(1-x1)^2在[-1.2,1]附近的极小值。
% 先写M函数optfun1.m
% function f=optfun1(x)
% f=100*(x(2)-x(1).^2).^2+(1-x(1)).^2
% 求解
% clear;
% x=[-1.2,1];
% [x,options]=fminu('optfun1',x,options);
% x,options(8)
%
%FMINU Finds the minimum of a function of several variables.
% X=FMINU('FUN',X0) starts at the matrix X0 and finds a minimum to the
% function which is described in FUN (usually an M-file: FUN.M).
% The function 'FUN' should return a scalar function value: F=FUN(X).
%
% X=FMINU('FUN',X0,OPTIONS) allows a vector of optional parameters to
% be defined. OPTIONS(1) controls how much display output is given; set
% to 1 for a tabular display of results, (default is no display: 0).
% OPTIONS(2) is a measure of the precision required for the values of
% X at the solution. OPTIONS(3) is a measure of the precision
% required of the objective function at the solution.
% For more information type HELP FOPTIONS.
%
% X=FMINU('FUN',X0,OPTIONS,'GRADFUN') enables a function'GRADFUN'
% to be entered which returns the partial derivatives of the function,
% df/dX, at the point X: gf = GRADFUN(X).
%
% X=FMINU('FUN',X0,OPTIONS,'GRADFUN',P1,P2,...) passes the problem-
% dependent parameters P1,P2,... directly to the functions FUN
% and GRADFUN: FUN(X,P1,P2,...) and GRADFUN(X,P1,P2,...). Pass
% empty matrices for OPTIONS, and 'GRADFUN' to use the default
% values.
%
% [X,OPTIONS]=FMINU('FUN',X0,...) returns the parameters used in the
% optimization method. For example, options(10) contains the number
% of function evaluations used.
%
% The default algorithm is the BFGS Quasi-Newton method with a
% mixed quadratic and cubic line search procedure.
% Copyright (c) 1990-98 by The MathWorks, Inc.
% $Revision: 1.27 $ $Date: 1997/11/29 01:23:11 $
% Andy Grace 7-9-90.
% ------------Initialization----------------
XOUT=x(:);
nvars=length(XOUT);
if nargin < 2, error('fminu requires two input arguments');end
if nargin < 3, OPTIONS=[]; end
if nargin < 4, GRADFUN=[]; end
% Convert to inline function as needed.
if ~isempty(FUN)
[funfcn, msg] = fcnchk(FUN,length(varargin));
if ~isempty(msg)
error(msg);
end
else
error('FUN must be a function name or valid expression.')
end
if ~isempty(GRADFUN)
[gradfcn, msg] = fcnchk(GRADFUN,length(varargin));
if ~isempty(msg)
error(msg);
end
else
gradfcn = [];
end
f = feval(funfcn,x,varargin{:});
n = length(XOUT);
GRAD=zeros(nvars,1);
OLDX=XOUT;
MATX=zeros(3,1);
MATL=[f;0;0];
OLDF=f;
FIRSTF=f;
[OLDX,OLDF,HESS,OPTIONS]=optint(XOUT,f,OPTIONS);
CHG = 1e-7*abs(XOUT)+1e-7*ones(nvars,1);
SD = zeros(nvars,1);
diff = zeros(nvars,1);
PCNT = 0;
how = '';
OPTIONS(10)=2; % Function evaluation count (add 1 for last evaluation)
status =-1;
while status ~= 1
% Work Out Gradients
if isempty(gradfcn) | OPTIONS(9)
OLDF=f;
% Finite difference perturbation levels
% First check perturbation level is not less than search direction.
f = find(10*abs(CHG)>abs(SD));
CHG(f) = -0.1*SD(f);
% Ensure within user-defined limits
CHG = sign(CHG+eps).*min(max(abs(CHG),OPTIONS(16)),OPTIONS(17));
for gcnt=1:nvars
XOUT(gcnt,1)=XOUT(gcnt)+CHG(gcnt);
x(:) = XOUT;
f = feval(funfcn,x,varargin{:});
GRAD(gcnt)=(f-OLDF)/(CHG(gcnt));
if f < OLDF
OLDF=f;
else
XOUT(gcnt)=XOUT(gcnt)-CHG(gcnt);
end
end
% Try to set difference to 1e-8 for next iteration
% Add eps for machines that can't handle divide by zero.
CHG = 1e-8./(GRAD + eps);
f = OLDF;
OPTIONS(10)=OPTIONS(10)+nvars;
% Gradient check
if OPTIONS(9) == 1
GRADFD = GRAD;
x(:)=XOUT;
GRAD(:) = feval(gradfcn,x,varargin{:});
if isa(gradfcn,'inline')
graderr(GRADFD, GRAD, formula(gradfcn));
else
graderr(GRADFD, GRAD, gradfcn);
end
OPTIONS(9) = 0;
end
else
OPTIONS(11)=OPTIONS(11)+1;
x(:)=XOUT;
GRAD(:) = feval(gradfcn,x,varargin{:});
end
%---------------Initialization of Search Direction------------------
if status == -1
SD=-GRAD;
FIRSTF=f;
OLDG=GRAD;
GDOLD=GRAD'*SD;
% For initial step-size guess assume the minimum is at zero.
OPTIONS(18) = max(0.001, min([1,2*abs(f/GDOLD)]));
if OPTIONS(1)>0
disp([sprintf('%5.0f %12.6g %12.6g ',OPTIONS(10),f,OPTIONS(18)),sprintf('%12.3g ',GDOLD)]);
end
XOUT=XOUT+OPTIONS(18)*SD;
status=4;
if OPTIONS(7)==0; PCNT=1; end
else
%-------------Direction Update------------------
gdnew=GRAD'*SD;
if OPTIONS(1)>0,
num=[sprintf('%5.0f %12.6g %12.6g ',OPTIONS(10),f,OPTIONS(18)),sprintf('%12.3g ',gdnew)];
end
if (gdnew>0 & f>FIRSTF)|~finite(f)
% Case 1: New function is bigger than last and gradient w.r.t. SD -ve
% ...interpolate.
how='inter';
[stepsize]=cubici1(f,FIRSTF,gdnew,GDOLD,OPTIONS(18));
if stepsize<0|isnan(stepsize), stepsize=OPTIONS(18)/2; how='C1f '; end
if OPTIONS(18)<0.1&OPTIONS(6)==0
if stepsize*norm(SD)<eps
stepsize=exp(rand(1,1)-1)-0.1;
how='RANDOM STEPLENGTH';
status=0;
else
stepsize=stepsize/2;
end
end
OPTIONS(18)=stepsize;
XOUT=OLDX;
elseif f<FIRSTF
[newstep,fbest] =cubici3(f,FIRSTF,gdnew,GDOLD,OPTIONS(18));
sk=(XOUT-OLDX)'*(GRAD-OLDG);
if sk>1e-20
% Case 2: New function less than old fun. and OK for updating HESS
% .... update and calculate new direction.
how='';
if gdnew<0
how='incstep';
if newstep<OPTIONS(18), newstep=2*OPTIONS(18)+1e-5; how=[how,' IF']; end
OPTIONS(18)=min([max([2,1.5*OPTIONS(18)]),1+sk+abs(gdnew)+max([0,OPTIONS(18)-1]), (1.2+0.3*(~OPTIONS(7)))*abs(newstep)]);
else % gdnew>0
if OPTIONS(18)>0.9
how='int_st';
OPTIONS(18)=min([1,abs(newstep)]);
end
end %if gdnew
[HESS,SD]=updhess(XOUT,OLDX,GRAD,OLDG,HESS,OPTIONS);
gdnew=GRAD'*SD;
OLDX=XOUT;
status=4;
% Save Variables for next update
FIRSTF=f;
OLDG=GRAD;
GDOLD=gdnew;
% If mixed interpolation set PCNT
if OPTIONS(7)==0, PCNT=1; MATX=zeros(3,1); MATL(1)=f; end
elseif gdnew>0 %sk<=0
% Case 3: No good for updating HESSIAN .. interpolate or halve step length.
how='inter_st';
if OPTIONS(18)>0.01
OPTIONS(18)=0.9*newstep;
XOUT=OLDX;
end
if OPTIONS(18)>1, OPTIONS(18)=1; end
else
% Increase step, replace starting point
OPTIONS(18)=max([min([newstep-OPTIONS(18),3]),0.5*OPTIONS(18)]);
how='incst2';
OLDX=XOUT;
FIRSTF=f;
OLDG=GRAD;
GDOLD=GRAD'*SD;
OLDX=XOUT;
end % if sk>
% Case 4: New function bigger than old but gradient in on
% ...reduce step length.
else %gdnew<0 & F>FIRSTF
if gdnew<0&f>FIRSTF
how='red_step';
if norm(GRAD-OLDG)<1e-10; HESS=eye(nvars); end
if abs(OPTIONS(18))<eps
SD=norm(nvars,1)*(rand(nvars,1)-0.5);
OPTIONS(18)=abs(rand(1,1)-0.5)*1e-6;
how='RANDOM SD';
else
OPTIONS(18)=-OPTIONS(18)/2;
end
XOUT=OLDX;
end %gdnew>0
end % if (gdnew>0 & F>FIRSTF)|~finite(F)
XOUT=XOUT+OPTIONS(18)*SD;
if isinf(OPTIONS(1))
disp([num,how])
elseif OPTIONS(1)>0
disp(num)
end
end %----------End of Direction Update-------------------
% Check Termination
if max(abs(SD))<2*OPTIONS(2) & (-GRAD'*SD) < 2*OPTIONS(3)
if OPTIONS(1) > 0
disp('Optimization Terminated Successfully')
disp(' Search direction less than 2*options(2)')
disp(' Gradient in the search direction less than 2*options(3)')
disp([' NUMBER OF FUNCTION EVALUATIONS=', int2str(OPTIONS(10))]);
end
status=1;
elseif OPTIONS(10)>OPTIONS(14)
if OPTIONS(1) >= 0
disp('Maximum number of function evaluations exceeded;')
disp(' increase options(14).')
end
status=1;
else
% Line search using mixed polynomial interpolation and extrapolation.
if PCNT~=0
while PCNT > 0 & OPTIONS(10) <= OPTIONS(14)
x(:) = XOUT;
f = feval(funfcn,x,varargin{:});
OPTIONS(10)=OPTIONS(10)+1;
[PCNT,MATL,MATX,steplen,f, how]=searchq(PCNT,f,OLDX,MATL,MATX,SD,GDOLD,OPTIONS(18), how);
OPTIONS(18)=steplen;
XOUT=OLDX+steplen*SD;
end
if OPTIONS(10)>OPTIONS(14)
if OPTIONS(1) >= 0
disp('Maximum number of function evaluations exceeded;')
disp(' increase options(14).')
end
status=1;
end
else
x(:)=XOUT;
f = feval(funfcn,x,varargin{:});
OPTIONS(10)=OPTIONS(10)+1;
end
end
end
x(:)=XOUT;
f = feval(funfcn,x,varargin{:});
if f > FIRSTF
OPTIONS(8) = FIRSTF;
x(:)=OLDX;
else
OPTIONS(8) = f;
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -