📄 numerictypecompiler.java
字号:
/* Derby - Class org.apache.derby.impl.sql.compile.NumericTypeCompiler Copyright 2000, 2004 The Apache Software Foundation or its licensors, as applicable. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */package org.apache.derby.impl.sql.compile;import org.apache.derby.iapi.sql.conn.LanguageConnectionContext;import org.apache.derby.iapi.services.context.ContextService;import org.apache.derby.iapi.services.loader.ClassFactory;import org.apache.derby.iapi.services.sanity.SanityManager;import org.apache.derby.iapi.services.info.JVMInfo;import org.apache.derby.iapi.services.io.StoredFormatIds;import org.apache.derby.iapi.error.StandardException;import org.apache.derby.iapi.types.DataTypeDescriptor;import org.apache.derby.iapi.types.DataTypeDescriptor;import org.apache.derby.iapi.types.DataValueFactory;import org.apache.derby.iapi.types.NumberDataValue;import org.apache.derby.iapi.types.TypeId;import org.apache.derby.iapi.sql.compile.TypeCompiler;import org.apache.derby.iapi.reference.ClassName;import org.apache.derby.iapi.reference.Limits;import org.apache.derby.iapi.reference.SQLState;import org.apache.derby.iapi.services.compiler.LocalField;import org.apache.derby.iapi.services.compiler.MethodBuilder;/** * This class implements TypeId for the SQL numeric datatype. * * @author Jeff Lichtman */public final class NumericTypeCompiler extends BaseTypeCompiler{ /** @see TypeCompiler#interfaceName */ public String interfaceName() { return ClassName.NumberDataValue; } /** * @see TypeCompiler#getCorrespondingPrimitiveTypeName */ public String getCorrespondingPrimitiveTypeName() { /* Only numerics and booleans get mapped to Java primitives */ int formatId = getStoredFormatIdFromTypeId(); switch (formatId) { case StoredFormatIds.DOUBLE_TYPE_ID: return "double"; case StoredFormatIds.INT_TYPE_ID: return "int"; case StoredFormatIds.LONGINT_TYPE_ID: return "long"; case StoredFormatIds.REAL_TYPE_ID: return "float"; case StoredFormatIds.SMALLINT_TYPE_ID: return "short"; case StoredFormatIds.TINYINT_TYPE_ID: return "byte"; case StoredFormatIds.DECIMAL_TYPE_ID: default: if (SanityManager.DEBUG) { SanityManager.THROWASSERT( "unexpected formatId in getCorrespondingPrimitiveTypeName() - " + formatId); } return null; } } /** * Get the method name for getting out the corresponding primitive * Java type. * * @return String The method call name for getting the * corresponding primitive Java type. */ public String getPrimitiveMethodName() { int formatId = getStoredFormatIdFromTypeId(); switch (formatId) { case StoredFormatIds.DOUBLE_TYPE_ID: return "getDouble"; case StoredFormatIds.INT_TYPE_ID: return "getInt"; case StoredFormatIds.LONGINT_TYPE_ID: return "getLong"; case StoredFormatIds.REAL_TYPE_ID: return "getFloat"; case StoredFormatIds.SMALLINT_TYPE_ID: return "getShort"; case StoredFormatIds.TINYINT_TYPE_ID: return "getByte"; case StoredFormatIds.DECIMAL_TYPE_ID: default: if (SanityManager.DEBUG) { SanityManager.THROWASSERT( "unexpected formatId in getPrimitiveMethodName() - " + formatId); } return null; } } /** * @see TypeCompiler#getCastToCharWidth */ public int getCastToCharWidth(DataTypeDescriptor dts) { int formatId = getStoredFormatIdFromTypeId(); switch (formatId) { case StoredFormatIds.DECIMAL_TYPE_ID: // Need to have space for '-' and decimal point. return dts.getPrecision() + 2; case StoredFormatIds.DOUBLE_TYPE_ID: return TypeCompiler.DOUBLE_MAXWIDTH_AS_CHAR; case StoredFormatIds.INT_TYPE_ID: return TypeCompiler.INT_MAXWIDTH_AS_CHAR; case StoredFormatIds.LONGINT_TYPE_ID: return TypeCompiler.LONGINT_MAXWIDTH_AS_CHAR; case StoredFormatIds.REAL_TYPE_ID: return TypeCompiler.REAL_MAXWIDTH_AS_CHAR; case StoredFormatIds.SMALLINT_TYPE_ID: return TypeCompiler.SMALLINT_MAXWIDTH_AS_CHAR; case StoredFormatIds.TINYINT_TYPE_ID: return TypeCompiler.TINYINT_MAXWIDTH_AS_CHAR; default: if (SanityManager.DEBUG) { SanityManager.THROWASSERT( "unexpected formatId in getCastToCharWidth() - " + formatId); } return 0; } } /** * @see TypeCompiler#resolveArithmeticOperation * * @exception StandardException Thrown on error */ public DataTypeDescriptor resolveArithmeticOperation(DataTypeDescriptor leftType, DataTypeDescriptor rightType, String operator) throws StandardException { NumericTypeCompiler higherTC; DataTypeDescriptor higherType; boolean nullable; int precision, scale, maximumWidth; /* ** Check the right type to be sure it's a number. By convention, ** we call this method off the TypeId of the left operand, so if ** we get here, we know the left operand is a number. */ if (SanityManager.DEBUG) SanityManager.ASSERT(leftType.getTypeId().isNumericTypeId(), "The left type is supposed to be a number because we're resolving an arithmetic operator"); TypeId leftTypeId = leftType.getTypeId(); TypeId rightTypeId = rightType.getTypeId(); boolean supported = true; if ( ! (rightTypeId.isNumericTypeId()) ) { supported = false; } if (TypeCompiler.MOD_OP.equals(operator)) { switch (leftTypeId.getJDBCTypeId()) { case java.sql.Types.TINYINT: case java.sql.Types.SMALLINT: case java.sql.Types.INTEGER: case java.sql.Types.BIGINT: break; default: supported = false; break; } switch (rightTypeId.getJDBCTypeId()) { case java.sql.Types.TINYINT: case java.sql.Types.SMALLINT: case java.sql.Types.INTEGER: case java.sql.Types.BIGINT: break; default: supported = false; break; } } if (!supported) { throw StandardException.newException(SQLState.LANG_BINARY_OPERATOR_NOT_SUPPORTED, operator, leftType.getTypeId().getSQLTypeName(), rightType.getTypeId().getSQLTypeName() ); } /* ** Take left as the higher precedence if equal */ if (rightTypeId.typePrecedence() > leftTypeId.typePrecedence()) { higherType = rightType; higherTC = (NumericTypeCompiler) getTypeCompiler(rightTypeId); } else { higherType = leftType; higherTC = (NumericTypeCompiler) getTypeCompiler(leftTypeId); } /* The calculation of precision and scale should be based upon * the type with higher precedence, which is going to be the result * type, this is also to be consistent with maximumWidth. Beetle 3906. */ precision = higherTC.getPrecision(operator, leftType, rightType); scale = higherTC.getScale(operator, leftType, rightType); if (higherType.getTypeId().isDecimalTypeId()) { maximumWidth = (scale > 0) ? precision + 3 : precision + 1; /* ** Be careful not to overflow */ if (maximumWidth < precision) { maximumWidth = Integer.MAX_VALUE; } } else { maximumWidth = higherType.getMaximumWidth(); } /* The result is nullable if either side is nullable */ nullable = leftType.isNullable() || rightType.isNullable(); /* ** The higher type does not have the right nullability. Create a ** new DataTypeDescriptor that has the correct type and nullability. ** ** It's OK to call the implementation of the DataTypeDescriptorFactory ** here, because we're in the same package. */ return new DataTypeDescriptor( higherType.getTypeId(), precision, scale, nullable, maximumWidth ); } /** @see TypeCompiler#comparable */ public boolean comparable(TypeId otherType, boolean forEquals, ClassFactory cf) { return numberComparable(otherType, forEquals, cf); } /** @see TypeCompiler#convertible */ public boolean convertible(TypeId otherType, boolean forDataTypeFunction) { return (numberConvertible(otherType, forDataTypeFunction)); } /** * Tell whether this type (numeric) is compatible with the given type. * * @param otherType The TypeId of the other type. */ public boolean compatible(TypeId otherType) { // Numbers can only be compatible with other numbers. return (otherType.isNumericTypeId()); } /** @see TypeCompiler#storable */ public boolean storable(TypeId otherType, ClassFactory cf) { return numberStorable(getTypeId(), otherType, cf); } /** Return the method name to get a Derby DataValueDescriptor object of the correct type. This implementation returns "getDataValue". */ protected String dataValueMethodName() { if (getStoredFormatIdFromTypeId() == StoredFormatIds.DECIMAL_TYPE_ID) return "getDecimalDataValue"; else return super.dataValueMethodName(); } protected String nullMethodName() { int formatId = getStoredFormatIdFromTypeId(); switch (formatId) { case StoredFormatIds.DECIMAL_TYPE_ID: return "getNullDecimal"; case StoredFormatIds.DOUBLE_TYPE_ID: return "getNullDouble"; case StoredFormatIds.INT_TYPE_ID: return "getNullInteger"; case StoredFormatIds.LONGINT_TYPE_ID: return "getNullLong"; case StoredFormatIds.REAL_TYPE_ID: return "getNullFloat"; case StoredFormatIds.SMALLINT_TYPE_ID: return "getNullShort"; case StoredFormatIds.TINYINT_TYPE_ID: return "getNullByte"; default: if (SanityManager.DEBUG) { SanityManager.THROWASSERT( "unexpected formatId in nullMethodName() - " + formatId); } return null; } } /** * Get the precision of the operation involving * two of the same types. Only meaningful for * decimals, which override this. * * @param operator a string representing the operator, * null means no operator, just a type merge * @param leftType the left type * @param rightType the left type * * @return the resultant precision */ private int getPrecision(String operator, DataTypeDescriptor leftType, DataTypeDescriptor rightType) { // Only meaningful for decimal if (getStoredFormatIdFromTypeId() != StoredFormatIds.DECIMAL_TYPE_ID) { return leftType.getPrecision(); } long lscale = (long)leftType.getScale(); long rscale = (long)rightType.getScale(); long lprec = (long)leftType.getPrecision(); long rprec = (long)rightType.getPrecision(); long val; /* ** Null means datatype merge. Take the maximum ** left of decimal digits plus the scale. */ if (operator == null) { val = this.getScale(operator, leftType, rightType) + Math.max(lprec - lscale, rprec - rscale); } else if (operator.equals(TypeCompiler.TIMES_OP)) { val = lprec + rprec; } else if (operator.equals(TypeCompiler.SUM_OP)) { val = lprec - lscale + rprec - rscale + this.getScale(operator, leftType, rightType); } else if (operator.equals(TypeCompiler.DIVIDE_OP)) { val = Math.min(NumberDataValue.MAX_DECIMAL_PRECISION_SCALE, this.getScale(operator, leftType, rightType) + lprec - lscale + rprec); } /* ** AVG, -, + */ else { /* ** Take max scale and max left of decimal ** plus one. */ val = this.getScale(operator, leftType, rightType) + Math.max(lprec - lscale, rprec - rscale) + 1; if (val > Limits.DB2_MAX_DECIMAL_PRECISION_SCALE) // then, like DB2, just set it to the max possible. val = Limits.DB2_MAX_DECIMAL_PRECISION_SCALE; } if (val > Integer.MAX_VALUE) { val = Integer.MAX_VALUE; } val = Math.min(NumberDataValue.MAX_DECIMAL_PRECISION_SCALE, val); return (int)val; } /** * Get the scale of the operation involving * two of the same types. Since we don't really * have a good way to pass the resultant scale * and precision around at execution time, we * will model that BigDecimal does by default. * This is good in most cases, though we would * probably like to use something more sophisticated * for division. * * @param operator a string representing the operator, * null means no operator, just a type merge * @param leftType the left type * @param rightType the left type * * @return the resultant precision */ private int getScale(String operator, DataTypeDescriptor leftType, DataTypeDescriptor rightType) { // Only meaningful for decimal if (getStoredFormatIdFromTypeId() != StoredFormatIds.DECIMAL_TYPE_ID) { return leftType.getScale(); } long val; long lscale = (long)leftType.getScale(); long rscale = (long)rightType.getScale(); long lprec = (long)leftType.getPrecision(); long rprec = (long)rightType.getPrecision(); /* ** Retain greatest scale, take sum of left ** of decimal */ if (TypeCompiler.TIMES_OP.equals(operator)) { val = lscale + rscale; } else if (TypeCompiler.DIVIDE_OP.equals(operator)) { /* ** Take max left scale + right precision - right scale + 1, ** or 4, whichever is biggest */ LanguageConnectionContext lcc = (LanguageConnectionContext) (ContextService.getContext(LanguageConnectionContext.CONTEXT_ID)); // Scale: 31 - left precision + left scale - right scale val = Math.max(NumberDataValue.MAX_DECIMAL_PRECISION_SCALE - lprec + lscale - rscale, 0); } else if (TypeCompiler.AVG_OP.equals(operator)) { val = Math.max(Math.max(lscale, rscale), NumberDataValue.MIN_DECIMAL_DIVIDE_SCALE); } /* ** SUM, -, + all take max(lscale,rscale) */ else { val = Math.max(lscale, rscale); } if (val > Integer.MAX_VALUE) { val = Integer.MAX_VALUE; } val = Math.min(NumberDataValue.MAX_DECIMAL_PRECISION_SCALE, val); return (int)val; } public void generateDataValue(MethodBuilder mb, LocalField field) { if (!JVMInfo.J2ME && getTypeId().isDecimalTypeId()) { // cast the value to a Number (from BigDecimal) for method resolution // For J2ME there is no implementation of Number for DECIMAL // so values are handled as thier original type, which is just // a String for DECIMAL constants from the parser. mb.upCast("java.lang.Number"); } super.generateDataValue(mb, field); }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -