📄 lockset.java
字号:
/* Derby - Class org.apache.derby.impl.services.locks.LockSet Copyright 1997, 2004 The Apache Software Foundation or its licensors, as applicable. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */package org.apache.derby.impl.services.locks;import org.apache.derby.iapi.services.locks.Latch;import org.apache.derby.iapi.services.locks.Lockable;import org.apache.derby.iapi.services.locks.C_LockFactory;import org.apache.derby.iapi.services.monitor.Monitor;import org.apache.derby.iapi.error.StandardException;import org.apache.derby.iapi.services.sanity.SanityManager;import org.apache.derby.iapi.services.diag.DiagnosticUtil;import org.apache.derby.iapi.reference.Property;import org.apache.derby.iapi.reference.SQLState;import java.util.Hashtable;import java.util.Enumeration;/** A LockSet is a complete lock table. A lock table is a hash table keyed by a Lockable and with a LockControl as the data element. <P> A LockControl contains information about the locks held on a Lockable. <BR> MT - Mutable - Container Object : Thread Safe <BR> The Hashtable we extend is synchronized on this, all addition, searching of the hashtable is performed using java synchroization(this). <BR> The class creates ActiveLock and LockControl objects. LockControl objects are never passed out of this class, All the methods of LockControl are called while being synchronized on this, thus providing the single threading that LockControl required. Methods of Lockables are only called by this class or LockControl, and always while being synchronized on this, thus providing the single threading that Lockable requires. @see LockControl*/public final class LockSet extends Hashtable{ /* ** Fields */ private final SinglePool factory; /** Timeout for deadlocks, in ms. <BR> MT - immutable */ protected int deadlockTimeout = Property.DEADLOCK_TIMEOUT_DEFAULT * 1000; protected int waitTimeout = Property.WAIT_TIMEOUT_DEFAULT * 1000;//EXCLUDE-START-lockdiag- // this varible is set and get without synchronization. // Only one thread should be setting it at one time. private boolean deadlockTrace; private Hashtable lockTraces; // rather than burden each lock with // its stack trace, keep a look aside table // that maps a lock to a stack trace//EXCLUDE-END-lockdiag- // The number of waiters for locks protected int blockCount; /* ** Constructor */ protected LockSet(SinglePool factory) { super(); this.factory = factory; } /* ** Public Methods */ /** * Lock an object within a specific compatibility space. * * @param compatabilitySpace Compatibility space. * @param ref Lockable reference. * @param qualifier Qualifier. * @param timeout Timeout in milli-seconds * * @return Object that represents the lock. * * @exception StandardException Standard Cloudscape policy. */ public Lock lockObject(Object compatabilitySpace, Lockable ref, Object qualifier, int timeout, Latch latch) throws StandardException { if (SanityManager.DEBUG) { if (SanityManager.DEBUG_ON("memoryLeakTrace")) { if (size() > 1000) System.out.println("memoryLeakTrace:LockSet: " + size()); } } Control gc; LockControl control; Lock lockItem; String lockDebug = null; synchronized (this) { gc = getControl(ref); if (gc == null) { // object is not locked, can be granted Lock gl = new Lock(compatabilitySpace, ref, qualifier); gl.grant(); put(ref, gl); return gl; } control = gc.getLockControl(); if (control != gc) { put(ref, control); } if (SanityManager.DEBUG) { SanityManager.ASSERT(ref.equals(control.getLockable())); // ASSERT item is in the list if (getControl(control.getLockable()) != control) { SanityManager.THROWASSERT( "lockObject mismatched lock items " + getControl(control.getLockable()) + " " + control); } } lockItem = control.addLock(this, compatabilitySpace, qualifier); if (lockItem.getCount() != 0) { return lockItem; } if (timeout == C_LockFactory.NO_WAIT) { // remove all trace of lock control.giveUpWait(lockItem, this); if (SanityManager.DEBUG) { if (SanityManager.DEBUG_ON("DeadlockTrace")) { SanityManager.showTrace(new Throwable()); // The following dumps the lock table as it // exists at the time a timeout is about to // cause a deadlock exception to be thrown. lockDebug = DiagnosticUtil.toDiagString(lockItem) + "\nCould not grant lock with zero timeout, here's the table" + this.toDebugString(); } } return null; } // this is where we need to release the latch if (latch != null) unlock(latch, 1); } // synchronized block boolean deadlockWait = false; int actualTimeout; if (timeout == C_LockFactory.WAIT_FOREVER) { // always check for deadlocks as there should not be any deadlockWait = true; if ((actualTimeout = deadlockTimeout) == C_LockFactory.WAIT_FOREVER) actualTimeout = Property.DEADLOCK_TIMEOUT_DEFAULT * 1000; } else { if (timeout == C_LockFactory.TIMED_WAIT) timeout = actualTimeout = waitTimeout; else actualTimeout = timeout; // five posible cases // i) timeout -1, deadlock -1 -> // just wait forever, no deadlock check // ii) timeout >= 0, deadlock -1 -> // just wait for timeout, no deadlock check // iii) timeout -1, deadlock >= 0 -> // wait for deadlock, then deadlock check, // then infinite timeout // iv) timeout >=0, deadlock < timeout -> // wait for deadlock, then deadlock check, // then wait for (timeout - deadlock) // v) timeout >=0, deadlock >= timeout -> // just wait for timeout, no deadlock check if (deadlockTimeout >= 0) { if (actualTimeout < 0) { // infinite wait but perform a deadlock check first deadlockWait = true; actualTimeout = deadlockTimeout; } else if (deadlockTimeout < actualTimeout) { // deadlock wait followed by a timeout wait deadlockWait = true; actualTimeout = deadlockTimeout; // leave timeout as the remaining time timeout -= deadlockTimeout; } } } ActiveLock waitingLock = (ActiveLock) lockItem; lockItem = null; if (deadlockTrace) { // we want to keep a stack trace of this thread just before it goes // into wait state, no need to synchronized because Hashtable.put // is synchronized and the new throwable is local to this thread. lockTraces.put(waitingLock, new Throwable()); } int earlyWakeupCount = 0; long startWaitTime = 0; try {forever: for (;;) { byte wakeupReason = waitingLock.waitForGrant(actualTimeout); ActiveLock nextWaitingLock = null; Object[] deadlockData = null; try { boolean willQuitWait; Enumeration timeoutLockTable = null; long currentTime = 0; synchronized (this) { if (control.isGrantable( control.firstWaiter() == waitingLock, compatabilitySpace, qualifier)) { // Yes, we are granted, put us on the granted queue. control.grant(waitingLock); // Remove from the waiting queue & get next waiter nextWaitingLock = control.getNextWaiter(waitingLock, true, this); // this is where we need to re-obtain the latch, // it's safe to call this lockObject() which will // get the synchronization we already hold, because // java allows nested synchronization and it will // be released automatically if we have to wait if (latch != null) { lockObject( compatabilitySpace, latch.getLockable(), latch.getQualifier(), C_LockFactory.WAIT_FOREVER, (Latch) null); } return waitingLock; } // try again later waitingLock.clearPotentiallyGranted(); willQuitWait = (wakeupReason != Constants.WAITING_LOCK_GRANT); StandardException deadlockException = null; if (((wakeupReason == Constants.WAITING_LOCK_IN_WAIT) && deadlockWait) || (wakeupReason == Constants.WAITING_LOCK_DEADLOCK)) { // check for a deadlock, even if we were woken up // because we were selected as a victim we still // check because the situation may have changed. deadlockData = Deadlock.look(
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -