📄 yuv2rgb.c
字号:
/************************************************************************
*
* yuv2rgb.c, colour space conversion for tmndecode (H.263 decoder)
*/
#include "config.h"
#include "tmndec.h"
#include "global.h"
#ifdef DISPLAY
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <X11/Xlib.h>
#include <X11/Xutil.h>
#endif
#ifdef DISPLAY
#undef INTERPOLATE
/*
* Erik Corry's multi-byte dither routines.
*
* The basic idea is that the Init generates all the necessary tables.
* The tables incorporate the information about the layout of pixels
* in the XImage, so that it should be able to cope with 15-bit, 16-bit
* 24-bit (non-packed) and 32-bit (10-11 bits per color!) screens.
* At present it cannot cope with 24-bit packed mode, since this involves
* getting down to byte level again. It is assumed that the bits for each
* color are contiguous in the longword.
*
* Writing to memory is done in shorts or ints. (Unfortunately, short is not
* very fast on Alpha, so there is room for improvement here). There is no
* dither time check for overflow - instead the tables have slack at
* each end. This is likely to be faster than an 'if' test as many modern
* architectures are really bad at ifs. Potentially, each '&&' causes a
* pipeline flush!
*
* There is no shifting and fixed point arithmetic, as I really doubt you
* can see the difference, and it costs. This may be just my bias, since I
* heard that Intel is really bad at shifting.
*/
/* Gamma correction stuff */
#define GAMMA_CORRECTION(x) ((int)(pow((x) / 255.0, 1.0 / gammaCorrect) * 255.0))
#define CHROMA_CORRECTION256(x) ((x) >= 128 \
? 128 + mmin(127, (int)(((x) - 128.0) * chromaCorrect)) \
: 128 - mmin(128, (int)((128.0 - (x)) * chromaCorrect)))
#define CHROMA_CORRECTION128(x) ((x) >= 0 \
? mmin(127, (int)(((x) * chromaCorrect))) \
: mmax(-128, (int)(((x) * chromaCorrect))))
#define CHROMA_CORRECTION256D(x) ((x) >= 128 \
? 128.0 + mmin(127.0, (((x) - 128.0) * chromaCorrect)) \
: 128.0 - mmin(128.0, (((128.0 - (x)) * chromaCorrect))))
#define CHROMA_CORRECTION128D(x) ((x) >= 0 \
? mmin(127.0, ((x) * chromaCorrect)) \
: mmax(-128.0, ((x) * chromaCorrect)))
/* Flag for gamma correction */
int gammaCorrectFlag = 0;
double gammaCorrect = 1.0;
/* Flag for chroma correction */
int chromaCorrectFlag = 0;
double chromaCorrect = 1.0;
/*
* How many 1 bits are there in the longword.
* Low performance, do not call often.
*/
static int
number_of_bits_set(a)
unsigned long a;
{
if(!a) return 0;
if(a & 1) return 1 + number_of_bits_set(a >> 1);
return(number_of_bits_set(a >> 1));
}
/*
* Shift the 0s in the least significant end out of the longword.
* Low performance, do not call often.
*/
static unsigned long
shifted_down(a)
unsigned long a;
{
if(!a) return 0;
if(a & 1) return a;
return a >> 1;
}
/*
* How many 0 bits are there at most significant end of longword.
* Low performance, do not call often.
*/
static int
free_bits_at_top(a)
unsigned long a;
{
/* assume char is 8 bits */
if(!a) return sizeof(unsigned long) * 8;
/* assume twos complement */
if(((long)a) < 0l) return 0;
return 1 + free_bits_at_top ( a << 1);
}
/*
* How many 0 bits are there at least significant end of longword.
* Low performance, do not call often.
*/
static int
free_bits_at_bottom(a)
unsigned long a;
{
/* assume char is 8 bits */
if(!a) return sizeof(unsigned long) * 8;
if(((long)a) & 1l) return 0;
return 1 + free_bits_at_bottom ( a >> 1);
}
static int *L_tab, *Cr_r_tab, *Cr_g_tab, *Cb_g_tab, *Cb_b_tab;
/*
* We define tables that convert a color value between -256 and 512
* into the R, G and B parts of the pixel. The normal range is 0-255.
*/
static long *r_2_pix;
static long *g_2_pix;
static long *b_2_pix;
static long *r_2_pix_alloc;
static long *g_2_pix_alloc;
static long *b_2_pix_alloc;
/*
*--------------------------------------------------------------
*
* InitColor16Dither --
*
* To get rid of the multiply and other conversions in color
* dither, we use a lookup table.
*
* Results:
* None.
*
* Side effects:
* The lookup tables are initialized.
*
*--------------------------------------------------------------
*/
void
InitColorDither(thirty2)
int thirty2;
{
extern XImage *ximage;
extern unsigned long wpixel[3];
/*
* misuse of the wpixel array for the pixel masks. Note that this
* implies that the window is created before this routine is called
*/
unsigned long red_mask = wpixel[0];
unsigned long green_mask = wpixel[1];
unsigned long blue_mask = wpixel[2];
int CR, CB, i;
if (ximage->bits_per_pixel == 24) /* not necessary in non-packed mode */
init_dither_tab();
L_tab = (int *)malloc(256*sizeof(int));
Cr_r_tab = (int *)malloc(256*sizeof(int));
Cr_g_tab = (int *)malloc(256*sizeof(int));
Cb_g_tab = (int *)malloc(256*sizeof(int));
Cb_b_tab = (int *)malloc(256*sizeof(int));
r_2_pix_alloc = (long *)malloc(768*sizeof(long));
g_2_pix_alloc = (long *)malloc(768*sizeof(long));
b_2_pix_alloc = (long *)malloc(768*sizeof(long));
if (L_tab == NULL ||
Cr_r_tab == NULL ||
Cr_g_tab == NULL ||
Cb_g_tab == NULL ||
Cb_b_tab == NULL ||
r_2_pix_alloc == NULL ||
g_2_pix_alloc == NULL ||
b_2_pix_alloc == NULL) {
fprintf(stderr, "Could not get enough memory in InitColorDither\n");
exit(1);
}
for (i=0; i<256; i++) {
L_tab[i] = i;
if (gammaCorrectFlag) {
L_tab[i] = GAMMA_CORRECTION(i);
}
CB = CR = i;
if (chromaCorrectFlag) {
CB -= 128;
CB = CHROMA_CORRECTION128(CB);
CR -= 128;
CR = CHROMA_CORRECTION128(CR);
} else {
CB -= 128; CR -= 128;
}
/* was
Cr_r_tab[i] = 1.596 * CR;
Cr_g_tab[i] = -0.813 * CR;
Cb_g_tab[i] = -0.391 * CB;
Cb_b_tab[i] = 2.018 * CB;
but they were just messed up.
Then was (_Video Deymstified_):
Cr_r_tab[i] = 1.366 * CR;
Cr_g_tab[i] = -0.700 * CR;
Cb_g_tab[i] = -0.334 * CB;
Cb_b_tab[i] = 1.732 * CB;
but really should be:
(from ITU-R BT.470-2 System B, G and SMPTE 170M )
*/
Cr_r_tab[i] = (0.419/0.299) * CR;
Cr_g_tab[i] = -(0.299/0.419) * CR;
Cb_g_tab[i] = -(0.114/0.331) * CB;
Cb_b_tab[i] = (0.587/0.331) * CB;
/*
though you could argue for:
SMPTE 240M
Cr_r_tab[i] = (0.445/0.212) * CR;
Cr_g_tab[i] = -(0.212/0.445) * CR;
Cb_g_tab[i] = -(0.087/0.384) * CB;
Cb_b_tab[i] = (0.701/0.384) * CB;
FCC
Cr_r_tab[i] = (0.421/0.30) * CR;
Cr_g_tab[i] = -(0.30/0.421) * CR;
Cb_g_tab[i] = -(0.11/0.331) * CB;
Cb_b_tab[i] = (0.59/0.331) * CB;
ITU-R BT.709
Cr_r_tab[i] = (0.454/0.2125) * CR;
Cr_g_tab[i] = -(0.2125/0.454) * CR;
Cb_g_tab[i] = -(0.0721/0.386) * CB;
Cb_b_tab[i] = (0.7154/0.386) * CB;
*/
}
/*
* Set up entries 0-255 in rgb-to-pixel value tables.
*/
for (i = 0; i < 256; i++) {
r_2_pix_alloc[i + 256] = i >> (8 - number_of_bits_set(red_mask));
r_2_pix_alloc[i + 256] <<= free_bits_at_bottom(red_mask);
g_2_pix_alloc[i + 256] = i >> (8 - number_of_bits_set(green_mask));
g_2_pix_alloc[i + 256] <<= free_bits_at_bottom(green_mask);
b_2_pix_alloc[i + 256] = i >> (8 - number_of_bits_set(blue_mask));
b_2_pix_alloc[i + 256] <<= free_bits_at_bottom(blue_mask);
/*
* If we have 16-bit output depth, then we double the value
* in the top word. This means that we can write out both
* pixels in the pixel doubling mode with one op. It is
* harmless in the normal case as storing a 32-bit value
* through a short pointer will lose the top bits anyway.
* A similar optimisation for Alpha for 64 bit has been
* prepared for, but is not yet implemented.
*/
if(!thirty2) {
r_2_pix_alloc[i + 256] |= (r_2_pix_alloc[i + 256]) << 16;
g_2_pix_alloc[i + 256] |= (g_2_pix_alloc[i + 256]) << 16;
b_2_pix_alloc[i + 256] |= (b_2_pix_alloc[i + 256]) << 16;
}
#ifdef SIXTYFOUR_BIT
if(thirty2) {
r_2_pix_alloc[i + 256] |= (r_2_pix_alloc[i + 256]) << 32;
g_2_pix_alloc[i + 256] |= (g_2_pix_alloc[i + 256]) << 32;
b_2_pix_alloc[i + 256] |= (b_2_pix_alloc[i + 256]) << 32;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -