📄 h.264
字号:
* none
* \par Output:
* none
* \ side effects
* sets omg->nz_coef[][][][] to -1
***********************************************************************
*/
void CAVLC_init()
{
int i, j, k, l;
for (i=0;i < img->width/MB_BLOCK_SIZE; i++)
for (j=0; j < img->height/MB_BLOCK_SIZE; j++)
for (k=0;k<4;k++)
for (l=0;l<6;l++)
img->nz_coeff[i][j][k][l]=-1;
}
/*!
***********************************************************************
* \brief
* Initializes the Image structure with appropriate parameters.
* \par Input:
* Input Parameters struct inp_par *inp
* \par Output:
* Image Parameters struct img_par *img
***********************************************************************
*/
void init_img()
{
int i,j;
img->num_reference_frames=input->num_reference_frames;
#ifdef _ADDITIONAL_REFERENCE_FRAME_
img->buf_cycle = max (input->num_reference_frames, input->add_ref_frame+1);
#else
img->buf_cycle = input->num_reference_frames;
#endif
img->lindex=0;
img->max_lindex=0;
img->framerate=INIT_FRAME_RATE; // The basic frame rate (of the original sequence)
if(input->InterlaceCodingOption != FRAME_CODING)
img->buf_cycle *= 2;
get_mem_mv (&(img->mv));
get_mem_mv (&(img->p_fwMV));
get_mem_mv (&(img->p_bwMV));
get_mem_mv (&(img->all_mv));
get_mem_mv (&(img->all_bmv));
get_mem_mv (&(img->abp_all_dmv));
get_mem_ACcoeff (&(img->cofAC));
get_mem_DCcoeff (&(img->cofDC));
if(input->InterlaceCodingOption >= MB_CODING)
{
get_mem_mv (&(img->mv_top));
get_mem_mv (&(img->p_fwMV_top));
get_mem_mv (&(img->p_bwMV_top));
get_mem_mv (&(img->all_mv_top));
get_mem_mv (&(img->all_bmv_top));
get_mem_mv (&(img->mv_bot));
get_mem_mv (&(img->p_fwMV_bot));
get_mem_mv (&(img->p_bwMV_bot));
get_mem_mv (&(img->all_mv_bot));
get_mem_mv (&(img->all_bmv_bot));
get_mem_mv (&(rddata_top_frame_mb.mv));
get_mem_mv (&(rddata_top_frame_mb.p_fwMV));
get_mem_mv (&(rddata_top_frame_mb.p_bwMV));
get_mem_mv (&(rddata_top_frame_mb.all_mv));
get_mem_mv (&(rddata_top_frame_mb.all_bmv));
get_mem_mv (&(rddata_bot_frame_mb.mv));
get_mem_mv (&(rddata_bot_frame_mb.p_fwMV));
get_mem_mv (&(rddata_bot_frame_mb.p_bwMV));
get_mem_mv (&(rddata_bot_frame_mb.all_mv));
get_mem_mv (&(rddata_bot_frame_mb.all_bmv));
get_mem_mv (&(rddata_top_field_mb.mv));
get_mem_mv (&(rddata_top_field_mb.p_fwMV));
get_mem_mv (&(rddata_top_field_mb.p_bwMV));
get_mem_mv (&(rddata_top_field_mb.all_mv));
get_mem_mv (&(rddata_top_field_mb.all_bmv));
get_mem_mv (&(rddata_bot_field_mb.mv));
get_mem_mv (&(rddata_bot_field_mb.p_fwMV));
get_mem_mv (&(rddata_bot_field_mb.p_bwMV));
get_mem_mv (&(rddata_bot_field_mb.all_mv));
get_mem_mv (&(rddata_bot_field_mb.all_bmv));
get_mem_mv (&(img->abp_all_dmv_top));
get_mem_mv (&(img->abp_all_dmv_bot));
get_mem_ACcoeff (&(rddata_top_frame_mb.cofAC));
get_mem_DCcoeff (&(rddata_top_frame_mb.cofDC));
get_mem_ACcoeff (&(rddata_bot_frame_mb.cofAC));
get_mem_DCcoeff (&(rddata_bot_frame_mb.cofDC));
get_mem_ACcoeff (&(rddata_top_field_mb.cofAC));
get_mem_DCcoeff (&(rddata_top_field_mb.cofDC));
get_mem_ACcoeff (&(rddata_bot_field_mb.cofAC));
get_mem_DCcoeff (&(rddata_bot_field_mb.cofDC));
}
if(input->InterlaceCodingOption != FRAME_CODING)
img->buf_cycle /= 2;
if ((img->quad = (int*)calloc (511, sizeof(int))) == NULL)
no_mem_exit ("init_img: img->quad");
img->quad+=255;
for (i=0; i < 256; ++i)
{
img->quad[i]=img->quad[-i]=i*i;
}
img->width = input->img_width;
img->height = input->img_height;
img->width_cr = input->img_width/2;
img->height_cr= input->img_height/2;
img->PicWidthInMbs = input->img_width/MB_BLOCK_SIZE;
img->FrameHeightInMbs = input->img_height/MB_BLOCK_SIZE;
img->FrameSizeInMbs = img->PicWidthInMbs * img->FrameHeightInMbs;
if (input->InterlaceCodingOption)
img->PicHeightInMapUnits = img->FrameHeightInMbs/2;
else
img->PicHeightInMapUnits = img->FrameHeightInMbs;
if(((img->mb_data) = (Macroblock *) calloc(img->FrameSizeInMbs,sizeof(Macroblock))) == NULL)
no_mem_exit("init_img: img->mb_data");
if(input->UseConstrainedIntraPred)
{
if(((img->intra_block) = (int*)calloc(img->FrameSizeInMbs,sizeof(int))) == NULL)
no_mem_exit("init_img: img->intra_block");
}
get_mem2Dint(&(img->ipredmode), img->width/BLOCK_SIZE, img->height/BLOCK_SIZE); //need two extra rows at right and bottom
if(input->InterlaceCodingOption >= MB_CODING)
{
get_mem2Dint(&(rddata_top_frame_mb.ipredmode), img->width/BLOCK_SIZE+3, img->height/BLOCK_SIZE+3);
get_mem2Dint(&(rddata_bot_frame_mb.ipredmode), img->width/BLOCK_SIZE+3, img->height/BLOCK_SIZE+3);
get_mem2Dint(&(rddata_top_field_mb.ipredmode), img->width/BLOCK_SIZE+3, img->height/BLOCK_SIZE+3);
get_mem2Dint(&(rddata_bot_field_mb.ipredmode), img->width/BLOCK_SIZE+3, img->height/BLOCK_SIZE+3);
}
// CAVLC mem
if((img->nz_coeff = (int****)calloc(img->width/MB_BLOCK_SIZE,sizeof(int***))) == NULL)
no_mem_exit("get_mem4global_buffers: nzcoeff");
for(j=0;j<img->width/MB_BLOCK_SIZE;j++)
{
get_mem3Dint(&(img->nz_coeff[j]), img->height/MB_BLOCK_SIZE, 4, 6);
}
CAVLC_init();
for (i=0; i < img->width/BLOCK_SIZE; i++)
for (j=0; j < img->height/BLOCK_SIZE; j++)
{
img->ipredmode[i][j]=-1;
}
img->mb_y_upd=0;
RandomIntraInit (img->width/16, img->height/16, input->RandomIntraMBRefresh);
FmoInit (img->width/16, img->height/16, input->num_slice_groups_minus1, input->FmoType, NULL);
InitSEIMessages(); // Tian Dong (Sept 2002)
// Initialize filtering parameters. If sending parameters, the offsets are
// multiplied by 2 since inputs are taken in "div 2" format.
// If not sending paramters, all fields are cleared
if (input->LFSendParameters)
{
input->LFAlphaC0Offset <<= 1;
input->LFBetaOffset <<= 1;
}
else
{
input->LFDisableIdc = 0;
input->LFAlphaC0Offset = 0;
input->LFBetaOffset = 0;
}
}
/*!
***********************************************************************
* \brief
* Free the Image structures
* \par Input:
* Image Parameters struct img_par *img
***********************************************************************
*/
void free_img ()
{
CloseSEIMessages(); // Tian Dong (Sept 2002)
free_mem_mv (img->mv);
free_mem_mv (img->p_fwMV);
free_mem_mv (img->p_bwMV);
free_mem_mv (img->all_mv);
free_mem_mv (img->all_bmv);
free_mem_mv (img->abp_all_dmv);
if(input->InterlaceCodingOption >= MB_CODING)
{
free_mem_mv (img->abp_all_dmv_top);
free_mem_mv (img->abp_all_dmv_bot);
}
free_mem_ACcoeff (img->cofAC);
free_mem_DCcoeff (img->cofDC);
free (img->quad-255);
}
/*!
************************************************************************
* \brief
* Allocates the picture structure along with its dependent
* data structures
* \return
* Pointer to a Picture
************************************************************************
*/
Picture *malloc_picture()
{
Picture *pic;
if ((pic = calloc (1, sizeof (Picture))) == NULL) no_mem_exit ("malloc_picture: Picture structure");
//! Note: slice structures are allocated as needed in code_a_picture
return pic;
}
/*!
************************************************************************
* \brief
* Frees a picture
* \param
* pic: POinter to a Picture to be freed
************************************************************************
*/
void free_picture(Picture *pic)
{
if (pic != NULL)
{
free_slice_list(pic);
free (pic);
}
}
/*!
************************************************************************
* \brief
* Reports the gathered information to appropriate outputs
* \par Input:
* struct inp_par *inp, \n
* struct img_par *img, \n
* struct stat_par *stat, \n
* struct stat_par *stat \n
*
* \par Output:
* None
************************************************************************
*/
void report()
{
int bit_use[2][2] ;
int i,j;
char name[20];
int bit_use_Bframe=0;
int total_bits;
float frame_rate;
float mean_motion_info_bit_use[2];
#ifndef WIN32
time_t now;
struct tm *l_time;
char string[1000];
#else
char timebuf[128];
#endif
bit_use[0][0]=1;
bit_use[1][0]=max(1,input->no_frames-1);
// Accumulate bit usage for inter and intra frames
bit_use[0][1]=bit_use[1][1]=0;
for (i=0; i < 11; i++)
bit_use[1][1] += stat->bit_use_mode_inter[0][i];
for (j=0;j<2;j++)
{
bit_use[j][1]+=stat->bit_use_header[j];
bit_use[j][1]+=stat->bit_use_mb_type[j];
bit_use[j][1]+=stat->tmp_bit_use_cbp[j];
bit_use[j][1]+=stat->bit_use_coeffY[j];
bit_use[j][1]+=stat->bit_use_coeffC[j];
bit_use[j][1]+=stat->bit_use_delta_quant[j];
bit_use[j][1]+=stat->bit_use_stuffingBits[j];
}
// B pictures
if(Bframe_ctr!=0)
{
bit_use_Bframe=0;
for(i=0; i<11; i++)
bit_use_Bframe += stat->bit_use_mode_inter[1][i];
bit_use_Bframe += stat->bit_use_header[2];
bit_use_Bframe += stat->bit_use_mb_type[2];
bit_use_Bframe += stat->tmp_bit_use_cbp[2];
bit_use_Bframe += stat->bit_use_coeffY[2];
bit_use_Bframe += stat->bit_use_coeffC[2];
bit_use_Bframe += stat->bit_use_delta_quant[2];
bit_use_Bframe +=stat->bit_use_stuffingBits[2];
stat->bitrate_P=(stat->bit_ctr_0+stat->bit_ctr_P)*(float)(img->framerate/(input->jumpd+1))/input->no_frames;
#ifdef _ADAPT_LAST_GROUP_
stat->bitrate_B=(stat->bit_ctr_B)*(float)(img->framerate/(input->jumpd+1))*initial_Bframes/Bframe_ctr;
#else
stat->bitrate_B=(stat->bit_ctr_B)*(float)(img->framerate/(input->jumpd+1))*input->successive_Bframe/Bframe_ctr;
#endif
}
else
{
if (input->no_frames > 1)
{
stat->bitrate=(bit_use[0][1]+bit_use[1][1])*(float)img->framerate/(input->no_frames*(input->jumpd+1));
}
}
fprintf(stdout,"--------------------------------------------------------------------------\n");
fprintf(stdout, " Freq. for encoded bitstream : %1.0f\n",(float)img->framerate/(float)(input->jumpd+1));
if(input->hadamard)
fprintf(stdout," Hadamard transform : Used\n");
else
fprintf(stdout," Hadamard transform : Not used\n");
fprintf(stdout," Image format : %dx%d\n",input->img_width,input->img_height);
if(input->intra_upd)
fprintf(stdout," Error robustness : On\n");
else
fprintf(stdout," Error robustness : Off\n");
fprintf(stdout, " Search range : %d\n",input->search_range);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -