📄 pngencoder.java
字号:
*
* @param data The data to be written into pngBytes.
* @param offset The starting point to write to.
* @return The next place to be written to in the pngBytes array.
*/
protected int writeBytes(byte[] data, int offset) {
this.maxPos = Math.max(this.maxPos, offset + data.length);
if (data.length + offset > this.pngBytes.length) {
this.pngBytes = resizeByteArray(this.pngBytes, this.pngBytes.length
+ Math.max(1000, data.length));
}
System.arraycopy(data, 0, this.pngBytes, offset, data.length);
return offset + data.length;
}
/**
* Write an array of bytes into the pngBytes array, specifying number of
* bytes to write. Note: This routine has the side effect of updating
* maxPos, the largest element written in the array.
* The array is resized by 1000 bytes or the length
* of the data to be written, whichever is larger.
*
* @param data The data to be written into pngBytes.
* @param nBytes The number of bytes to be written.
* @param offset The starting point to write to.
* @return The next place to be written to in the pngBytes array.
*/
protected int writeBytes(byte[] data, int nBytes, int offset) {
this.maxPos = Math.max(this.maxPos, offset + nBytes);
if (nBytes + offset > this.pngBytes.length) {
this.pngBytes = resizeByteArray(this.pngBytes, this.pngBytes.length
+ Math.max(1000, nBytes));
}
System.arraycopy(data, 0, this.pngBytes, offset, nBytes);
return offset + nBytes;
}
/**
* Write a two-byte integer into the pngBytes array at a given position.
*
* @param n The integer to be written into pngBytes.
* @param offset The starting point to write to.
* @return The next place to be written to in the pngBytes array.
*/
protected int writeInt2(int n, int offset) {
byte[] temp = {(byte) ((n >> 8) & 0xff), (byte) (n & 0xff)};
return writeBytes(temp, offset);
}
/**
* Write a four-byte integer into the pngBytes array at a given position.
*
* @param n The integer to be written into pngBytes.
* @param offset The starting point to write to.
* @return The next place to be written to in the pngBytes array.
*/
protected int writeInt4(int n, int offset) {
byte[] temp = {(byte) ((n >> 24) & 0xff),
(byte) ((n >> 16) & 0xff),
(byte) ((n >> 8) & 0xff),
(byte) (n & 0xff)};
return writeBytes(temp, offset);
}
/**
* Write a single byte into the pngBytes array at a given position.
*
* @param b The integer to be written into pngBytes.
* @param offset The starting point to write to.
* @return The next place to be written to in the pngBytes array.
*/
protected int writeByte(int b, int offset) {
byte[] temp = {(byte) b};
return writeBytes(temp, offset);
}
/**
* Write a PNG "IHDR" chunk into the pngBytes array.
*/
protected void writeHeader() {
int startPos = this.bytePos = writeInt4(13, this.bytePos);
this.bytePos = writeBytes(IHDR, this.bytePos);
this.width = this.image.getWidth(null);
this.height = this.image.getHeight(null);
this.bytePos = writeInt4(this.width, this.bytePos);
this.bytePos = writeInt4(this.height, this.bytePos);
this.bytePos = writeByte(8, this.bytePos); // bit depth
this.bytePos = writeByte((this.encodeAlpha) ? 6 : 2, this.bytePos);
// direct model
this.bytePos = writeByte(0, this.bytePos); // compression method
this.bytePos = writeByte(0, this.bytePos); // filter method
this.bytePos = writeByte(0, this.bytePos); // no interlace
this.crc.reset();
this.crc.update(this.pngBytes, startPos, this.bytePos - startPos);
this.crcValue = this.crc.getValue();
this.bytePos = writeInt4((int) this.crcValue, this.bytePos);
}
/**
* Perform "sub" filtering on the given row.
* Uses temporary array leftBytes to store the original values
* of the previous pixels. The array is 16 bytes long, which
* will easily hold two-byte samples plus two-byte alpha.
*
* @param pixels The array holding the scan lines being built
* @param startPos Starting position within pixels of bytes to be filtered.
* @param width Width of a scanline in pixels.
*/
protected void filterSub(byte[] pixels, int startPos, int width) {
int offset = this.bytesPerPixel;
int actualStart = startPos + offset;
int nBytes = width * this.bytesPerPixel;
int leftInsert = offset;
int leftExtract = 0;
for (int i = actualStart; i < startPos + nBytes; i++) {
this.leftBytes[leftInsert] = pixels[i];
pixels[i] = (byte) ((pixels[i] - this.leftBytes[leftExtract])
% 256);
leftInsert = (leftInsert + 1) % 0x0f;
leftExtract = (leftExtract + 1) % 0x0f;
}
}
/**
* Perform "up" filtering on the given row.
* Side effect: refills the prior row with current row
*
* @param pixels The array holding the scan lines being built
* @param startPos Starting position within pixels of bytes to be filtered.
* @param width Width of a scanline in pixels.
*/
protected void filterUp(byte[] pixels, int startPos, int width) {
final int nBytes = width * this.bytesPerPixel;
for (int i = 0; i < nBytes; i++) {
final byte currentByte = pixels[startPos + i];
pixels[startPos + i] = (byte) ((pixels[startPos + i]
- this.priorRow[i]) % 256);
this.priorRow[i] = currentByte;
}
}
/**
* Write the image data into the pngBytes array.
* This will write one or more PNG "IDAT" chunks. In order
* to conserve memory, this method grabs as many rows as will
* fit into 32K bytes, or the whole image; whichever is less.
*
*
* @return true if no errors; false if error grabbing pixels
*/
protected boolean writeImageData() {
int rowsLeft = this.height; // number of rows remaining to write
int startRow = 0; // starting row to process this time through
int nRows; // how many rows to grab at a time
byte[] scanLines; // the scan lines to be compressed
int scanPos; // where we are in the scan lines
int startPos; // where this line's actual pixels start (used
// for filtering)
byte[] compressedLines; // the resultant compressed lines
int nCompressed; // how big is the compressed area?
//int depth; // color depth ( handle only 8 or 32 )
PixelGrabber pg;
this.bytesPerPixel = (this.encodeAlpha) ? 4 : 3;
Deflater scrunch = new Deflater(this.compressionLevel);
ByteArrayOutputStream outBytes = new ByteArrayOutputStream(1024);
DeflaterOutputStream compBytes = new DeflaterOutputStream(outBytes,
scrunch);
try {
while (rowsLeft > 0) {
nRows = Math.min(32767 / (this.width
* (this.bytesPerPixel + 1)), rowsLeft);
nRows = Math.max(nRows, 1);
int[] pixels = new int[this.width * nRows];
pg = new PixelGrabber(this.image, 0, startRow,
this.width, nRows, pixels, 0, this.width);
try {
pg.grabPixels();
}
catch (Exception e) {
System.err.println("interrupted waiting for pixels!");
return false;
}
if ((pg.getStatus() & ImageObserver.ABORT) != 0) {
System.err.println("image fetch aborted or errored");
return false;
}
/*
* Create a data chunk. scanLines adds "nRows" for
* the filter bytes.
*/
scanLines = new byte[this.width * nRows * this.bytesPerPixel
+ nRows];
if (this.filter == FILTER_SUB) {
this.leftBytes = new byte[16];
}
if (this.filter == FILTER_UP) {
this.priorRow = new byte[this.width * this.bytesPerPixel];
}
scanPos = 0;
startPos = 1;
for (int i = 0; i < this.width * nRows; i++) {
if (i % this.width == 0) {
scanLines[scanPos++] = (byte) this.filter;
startPos = scanPos;
}
scanLines[scanPos++] = (byte) ((pixels[i] >> 16) & 0xff);
scanLines[scanPos++] = (byte) ((pixels[i] >> 8) & 0xff);
scanLines[scanPos++] = (byte) ((pixels[i]) & 0xff);
if (this.encodeAlpha) {
scanLines[scanPos++] = (byte) ((pixels[i] >> 24)
& 0xff);
}
if ((i % this.width == this.width - 1)
&& (this.filter != FILTER_NONE)) {
if (this.filter == FILTER_SUB) {
filterSub(scanLines, startPos, this.width);
}
if (this.filter == FILTER_UP) {
filterUp(scanLines, startPos, this.width);
}
}
}
/*
* Write these lines to the output area
*/
compBytes.write(scanLines, 0, scanPos);
startRow += nRows;
rowsLeft -= nRows;
}
compBytes.close();
/*
* Write the compressed bytes
*/
compressedLines = outBytes.toByteArray();
nCompressed = compressedLines.length;
this.crc.reset();
this.bytePos = writeInt4(nCompressed, this.bytePos);
this.bytePos = writeBytes(IDAT, this.bytePos);
this.crc.update(IDAT);
this.bytePos = writeBytes(compressedLines, nCompressed,
this.bytePos);
this.crc.update(compressedLines, 0, nCompressed);
this.crcValue = this.crc.getValue();
this.bytePos = writeInt4((int) this.crcValue, this.bytePos);
scrunch.finish();
return true;
}
catch (IOException e) {
System.err.println(e.toString());
return false;
}
}
/**
* Write a PNG "IEND" chunk into the pngBytes array.
*/
protected void writeEnd() {
this.bytePos = writeInt4(0, this.bytePos);
this.bytePos = writeBytes(IEND, this.bytePos);
this.crc.reset();
this.crc.update(IEND);
this.crcValue = this.crc.getValue();
this.bytePos = writeInt4((int) this.crcValue, this.bytePos);
}
/**
* Set the DPI for the X axis.
*
* @param xDpi The number of dots per inch
*/
public void setXDpi(int xDpi) {
this.xDpi = Math.round(xDpi / INCH_IN_METER_UNIT);
}
/**
* Get the DPI for the X axis.
*
* @return The number of dots per inch
*/
public int getXDpi() {
return Math.round(xDpi * INCH_IN_METER_UNIT);
}
/**
* Set the DPI for the Y axis.
*
* @param yDpi The number of dots per inch
*/
public void setYDpi(int yDpi) {
this.yDpi = Math.round(yDpi / INCH_IN_METER_UNIT);
}
/**
* Get the DPI for the Y axis.
*
* @return The number of dots per inch
*/
public int getYDpi() {
return Math.round(yDpi * INCH_IN_METER_UNIT);
}
/**
* Set the DPI resolution.
*
* @param xDpi The number of dots per inch for the X axis.
* @param yDpi The number of dots per inch for the Y axis.
*/
public void setDpi(int xDpi, int yDpi) {
this.xDpi = Math.round(xDpi / INCH_IN_METER_UNIT);
this.yDpi = Math.round(yDpi / INCH_IN_METER_UNIT);
}
/**
* Write a PNG "pHYs" chunk into the pngBytes array.
*/
protected void writeResolution() {
if (xDpi > 0 && yDpi > 0) {
final int startPos = bytePos = writeInt4(9, bytePos);
bytePos = writeBytes(PHYS, bytePos);
bytePos = writeInt4(xDpi, bytePos);
bytePos = writeInt4(yDpi, bytePos);
bytePos = writeByte(1, bytePos); // unit is the meter.
crc.reset();
crc.update(pngBytes, startPos, bytePos - startPos);
crcValue = crc.getValue();
bytePos = writeInt4((int) crcValue, bytePos);
}
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -