⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 timer.c

📁 Linux2.4.20针对三星公司的s3c2410开发板的内核改造。
💻 C
📖 第 1 页 / 共 2 页
字号:
    /* Compensate for (HZ==100) != (1 << SHIFT_HZ).     * Add 25% and 3.125% to get 128.125; => only 0.125% error (p. 14)     */    if (time_adj < 0)	time_adj -= (-time_adj >> 2) + (-time_adj >> 5);    else	time_adj += (time_adj >> 2) + (time_adj >> 5);#endif}/* in the NTP reference this is called "hardclock()" */static void update_wall_time_one_tick(void){	if ( (time_adjust_step = time_adjust) != 0 ) {	    /* We are doing an adjtime thing. 	     *	     * Prepare time_adjust_step to be within bounds.	     * Note that a positive time_adjust means we want the clock	     * to run faster.	     *	     * Limit the amount of the step to be in the range	     * -tickadj .. +tickadj	     */	     if (time_adjust > tickadj)		time_adjust_step = tickadj;	     else if (time_adjust < -tickadj)		time_adjust_step = -tickadj;	     	    /* Reduce by this step the amount of time left  */	    time_adjust -= time_adjust_step;	}	xtime.tv_usec += tick + time_adjust_step;	/*	 * Advance the phase, once it gets to one microsecond, then	 * advance the tick more.	 */	time_phase += time_adj;	if (time_phase <= -FINEUSEC) {		long ltemp = -time_phase >> SHIFT_SCALE;		time_phase += ltemp << SHIFT_SCALE;		xtime.tv_usec -= ltemp;	}	else if (time_phase >= FINEUSEC) {		long ltemp = time_phase >> SHIFT_SCALE;		time_phase -= ltemp << SHIFT_SCALE;		xtime.tv_usec += ltemp;	}}/* * Using a loop looks inefficient, but "ticks" is * usually just one (we shouldn't be losing ticks, * we're doing this this way mainly for interrupt * latency reasons, not because we think we'll * have lots of lost timer ticks */static void update_wall_time(unsigned long ticks){	do {		ticks--;		update_wall_time_one_tick();	} while (ticks);	if (xtime.tv_usec >= 1000000) {	    xtime.tv_usec -= 1000000;	    xtime.tv_sec++;	    second_overflow();	}}static inline void do_process_times(struct task_struct *p,	unsigned long user, unsigned long system){	unsigned long psecs;	psecs = (p->times.tms_utime += user);	psecs += (p->times.tms_stime += system);	if (psecs / HZ > p->rlim[RLIMIT_CPU].rlim_cur) {		/* Send SIGXCPU every second.. */		if (!(psecs % HZ))			send_sig(SIGXCPU, p, 1);		/* and SIGKILL when we go over max.. */		if (psecs / HZ > p->rlim[RLIMIT_CPU].rlim_max)			send_sig(SIGKILL, p, 1);	}}static inline void do_it_virt(struct task_struct * p, unsigned long ticks){	unsigned long it_virt = p->it_virt_value;	if (it_virt) {		it_virt -= ticks;		if (!it_virt) {			it_virt = p->it_virt_incr;			send_sig(SIGVTALRM, p, 1);		}		p->it_virt_value = it_virt;	}}static inline void do_it_prof(struct task_struct *p){	unsigned long it_prof = p->it_prof_value;	if (it_prof) {		if (--it_prof == 0) {			it_prof = p->it_prof_incr;			send_sig(SIGPROF, p, 1);		}		p->it_prof_value = it_prof;	}}void update_one_process(struct task_struct *p, unsigned long user,			unsigned long system, int cpu){	p->per_cpu_utime[cpu] += user;	p->per_cpu_stime[cpu] += system;	do_process_times(p, user, system);	do_it_virt(p, user);	do_it_prof(p);}	/* * Called from the timer interrupt handler to charge one tick to the current  * process.  user_tick is 1 if the tick is user time, 0 for system. */void update_process_times(int user_tick){	struct task_struct *p = current;	int cpu = smp_processor_id(), system = user_tick ^ 1;	update_one_process(p, user_tick, system, cpu);	scheduler_tick(user_tick, system);}/* * Nr of active tasks - counted in fixed-point numbers */static unsigned long count_active_tasks(void){	return (nr_running() + nr_uninterruptible()) * FIXED_1;}/* * Hmm.. Changed this, as the GNU make sources (load.c) seems to * imply that avenrun[] is the standard name for this kind of thing. * Nothing else seems to be standardized: the fractional size etc * all seem to differ on different machines. */unsigned long avenrun[3];static inline void calc_load(unsigned long ticks){	unsigned long active_tasks; /* fixed-point */	static int count = LOAD_FREQ;	count -= ticks;	if (count < 0) {		count += LOAD_FREQ;		active_tasks = count_active_tasks();		CALC_LOAD(avenrun[0], EXP_1, active_tasks);		CALC_LOAD(avenrun[1], EXP_5, active_tasks);		CALC_LOAD(avenrun[2], EXP_15, active_tasks);	}}/* jiffies at the most recent update of wall time */unsigned long wall_jiffies;/* * This spinlock protect us from races in SMP while playing with xtime. -arca */rwlock_t xtime_lock = RW_LOCK_UNLOCKED;static inline void update_times(void){	unsigned long ticks;	/*	 * update_times() is run from the raw timer_bh handler so we	 * just know that the irqs are locally enabled and so we don't	 * need to save/restore the flags of the local CPU here. -arca	 */	write_lock_irq(&xtime_lock);	vxtime_lock();	ticks = jiffies - wall_jiffies;	if (ticks) {		wall_jiffies += ticks;		update_wall_time(ticks);	}	vxtime_unlock();	write_unlock_irq(&xtime_lock);	calc_load(ticks);}void timer_bh(void){	TRACE_EVENT(TRACE_EV_KERNEL_TIMER, NULL);	update_times();	run_timer_list();}void do_timer(struct pt_regs *regs){	(*(unsigned long *)&jiffies)++;#ifndef CONFIG_SMP	/* SMP process accounting uses the local APIC timer */	update_process_times(user_mode(regs));#endif	mark_bh(TIMER_BH);	if (TQ_ACTIVE(tq_timer))		mark_bh(TQUEUE_BH);}#if !defined(__alpha__) && !defined(__ia64__)/* * For backwards compatibility?  This can be done in libc so Alpha * and all newer ports shouldn't need it. */asmlinkage unsigned long sys_alarm(unsigned int seconds){	struct itimerval it_new, it_old;	unsigned int oldalarm;	it_new.it_interval.tv_sec = it_new.it_interval.tv_usec = 0;	it_new.it_value.tv_sec = seconds;	it_new.it_value.tv_usec = 0;	do_setitimer(ITIMER_REAL, &it_new, &it_old);	oldalarm = it_old.it_value.tv_sec;	/* ehhh.. We can't return 0 if we have an alarm pending.. */	/* And we'd better return too much than too little anyway */	if (it_old.it_value.tv_usec)		oldalarm++;	return oldalarm;}#endif#ifndef __alpha__/* * The Alpha uses getxpid, getxuid, and getxgid instead.  Maybe this * should be moved into arch/i386 instead? *//** * sys_getpid - return the thread group id of the current process * * Note, despite the name, this returns the tgid not the pid.  The tgid and * the pid are identical unless CLONE_THREAD was specified on clone() in * which case the tgid is the same in all threads of the same group. * * This is SMP safe as current->tgid does not change. */asmlinkage long sys_getpid(void){	return current->tgid;}/* * This is not strictly SMP safe: p_opptr could change * from under us. However, rather than getting any lock * we can use an optimistic algorithm: get the parent * pid, and go back and check that the parent is still * the same. If it has changed (which is extremely unlikely * indeed), we just try again.. * * NOTE! This depends on the fact that even if we _do_ * get an old value of "parent", we can happily dereference * the pointer: we just can't necessarily trust the result * until we know that the parent pointer is valid. * * The "mb()" macro is a memory barrier - a synchronizing * event. It also makes sure that gcc doesn't optimize * away the necessary memory references.. The barrier doesn't * have to have all that strong semantics: on x86 we don't * really require a synchronizing instruction, for example. * The barrier is more important for code generation than * for any real memory ordering semantics (even if there is * a small window for a race, using the old pointer is * harmless for a while). */asmlinkage long sys_getppid(void){	int pid;	struct task_struct * me = current;	struct task_struct * parent;	parent = me->p_opptr;	for (;;) {		pid = parent->pid;#if CONFIG_SMP{		struct task_struct *old = parent;		mb();		parent = me->p_opptr;		if (old != parent)			continue;}#endif		break;	}	return pid;}asmlinkage long sys_getuid(void){	/* Only we change this so SMP safe */	return current->uid;}asmlinkage long sys_geteuid(void){	/* Only we change this so SMP safe */	return current->euid;}asmlinkage long sys_getgid(void){	/* Only we change this so SMP safe */	return current->gid;}asmlinkage long sys_getegid(void){	/* Only we change this so SMP safe */	return  current->egid;}#endifstatic void process_timeout(unsigned long __data){	TRACE_TIMER(TRACE_EV_TIMER_EXPIRED, 0, 0, 0);	wake_up_process((task_t *)__data);}/** * schedule_timeout - sleep until timeout * @timeout: timeout value in jiffies * * Make the current task sleep until @timeout jiffies have * elapsed. The routine will return immediately unless * the current task state has been set (see set_current_state()). * * You can set the task state as follows - * * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to * pass before the routine returns. The routine will return 0 * * %TASK_INTERRUPTIBLE - the routine may return early if a signal is * delivered to the current task. In this case the remaining time * in jiffies will be returned, or 0 if the timer expired in time * * The current task state is guaranteed to be TASK_RUNNING when this  * routine returns. * * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule * the CPU away without a bound on the timeout. In this case the return * value will be %MAX_SCHEDULE_TIMEOUT. * * In all cases the return value is guaranteed to be non-negative. */signed long schedule_timeout(signed long timeout){	struct timer_list timer;	unsigned long expire;	switch (timeout)	{	case MAX_SCHEDULE_TIMEOUT:		/*		 * These two special cases are useful to be comfortable		 * in the caller. Nothing more. We could take		 * MAX_SCHEDULE_TIMEOUT from one of the negative value		 * but I' d like to return a valid offset (>=0) to allow		 * the caller to do everything it want with the retval.		 */		schedule();		goto out;	default:		/*		 * Another bit of PARANOID. Note that the retval will be		 * 0 since no piece of kernel is supposed to do a check		 * for a negative retval of schedule_timeout() (since it		 * should never happens anyway). You just have the printk()		 * that will tell you if something is gone wrong and where.		 */		if (timeout < 0)		{			printk(KERN_ERR "schedule_timeout: wrong timeout "			       "value %lx from %p\n", timeout,			       __builtin_return_address(0));			current->state = TASK_RUNNING;			goto out;		}	}	TRACE_TIMER(TRACE_EV_TIMER_SETTIMEOUT, 0, timeout, 0);	expire = timeout + jiffies;	init_timer(&timer);	timer.expires = expire;	timer.data = (unsigned long) current;	timer.function = process_timeout;	add_timer(&timer);	schedule();	del_timer_sync(&timer);	timeout = expire - jiffies; out:	return timeout < 0 ? 0 : timeout;}/* Thread ID - the internal kernel "pid" */asmlinkage long sys_gettid(void){	return current->pid;}asmlinkage long sys_nanosleep(struct timespec *rqtp, struct timespec *rmtp){	struct timespec t;	unsigned long expire;	if(copy_from_user(&t, rqtp, sizeof(struct timespec)))		return -EFAULT;	if (t.tv_nsec >= 1000000000L || t.tv_nsec < 0 || t.tv_sec < 0)		return -EINVAL;	if (t.tv_sec == 0 && t.tv_nsec <= 2000000L &&	    current->policy != SCHED_OTHER)	{		/*		 * Short delay requests up to 2 ms will be handled with		 * high precision by a busy wait for all real-time processes.		 *		 * Its important on SMP not to do this holding locks.		 */		udelay((t.tv_nsec + 999) / 1000);		return 0;	}	expire = timespec_to_jiffies(&t) + (t.tv_sec || t.tv_nsec);	current->state = TASK_INTERRUPTIBLE;	expire = schedule_timeout(expire);	if (expire) {		if (rmtp) {			jiffies_to_timespec(expire, &t);			if (copy_to_user(rmtp, &t, sizeof(struct timespec)))				return -EFAULT;		}		return -EINTR;	}	return 0;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -