📄 samplega.cpp
字号:
/******************************************************************
** Sample Genetic Algorithm **
** Version 0.1 **
******************************************************************/
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
/************************************************
** The Definition of Constant **
************************************************/
#define POPSIZE 500 // population size
#define MAXIMIZATION 1 // maximization flag
#define MINIMIZATION 2 // minimization flag
/**************************************************
** The Definition of User Data **
**(For different problem,there are some different**
**************************************************/
#define Cmax 100 // certain maximal value
#define Cmin 0 // certain minimum value
#define LENGTH1 10 // the chromosome length of 1st variable
#define LENGTH2 10 // the chromosome length of 2nd variable
#define CHROMLENGTH LENGTH1+LENGTH2 // total length of chromosome
int FunctionMode = MAXIMIZATION; // optimization type
int PopSize = 80; // population size
int MaxGeneration = 200; // max. number of generation
double Pc = 0.6; // probability of crossover
double Pm = 0.001; // probability of mutation
/************************************************
** The Definition of Data Structure **
************************************************/
struct individual
{
char chrom[CHROMLENGTH+1]; // a string of code representing individual
double value; // object value of this individual
double fitness; // fitness value of this individual
};
/************************************************
** The Definition of Globle Variables **
************************************************/
int generation; // number of generation
int best_index; // index of best individual
int worst_index; // index of wrost individual
struct individual bestindividual; // best individual of current generation
struct individual worstindividual; // wrost individual of current generation
struct individual currentbest; // best individual by now
struct individual population[POPSIZE]; // population
/************************************************
** Declaration of Prototype **
************************************************/
void GenerateInitialPopulation(void);
void GenerateNextPopulation(void);
void EvaluatePopulation(void);
long DecodeChromosome(char*, int, int);
void CalculateObjectValue(void);
void CalculateFitnessValue(void);
void FindBestAndWorstIndividual(void);
void PerformEvolution(void);
void SelectionOperator(void);
void CrossoverOperator(void);
void MutationOperator(void);
void OutputTextReport(void);
/************************************************
** main program **
************************************************/
void main(void)
{
generation=0;
GenerateInitialPopulation();
EvaluatePopulation();
while (generation < MaxGeneration)
{
generation++;
GenerateNextPopulation();
EvaluatePopulation();
PerformEvolution();
OutputTextReport();
}
}
/************************************************
** Functino: Generate the first population **
** Variables: None **
************************************************/
void GenerateInitialPopulation(void)
{
int i, j;
//randomize();
for (i=0; i<PopSize; i++)
{
for (j=0; j<CHROMLENGTH; j++)
population[i].chrom[j]=(rand()%10<5)?'0':'1';
}
population[i].chrom[CHROMLENGTH]='\0';
}
/************************************************
** Functino: Initial the first generation **
** Variables: None **
************************************************/
void GenerateNextPopulation(void)
{
SelectionOperator();
CrossoverOperator();
MutationOperator();
}
/*****************************************************************
** Functino: Evaluate population according to certain formula **
** Variables: None **
*****************************************************************/
void EvaluatePopulation(void)
{
CalculateObjectValue();
CalculateFitnessValue();
FindBestAndWorstIndividual();
}
/************************************************
** Functino: To decode a binary chromosome **
** into a decimal integer **
** Variables: None **
** Note: The returned value may be plus, or **
** minus. For different coding method, **
** this value may be changed into **
** "unsigned int". **
************************************************/
long DecodeChromosome(char* string, int point, int length)
{
int i;
long decimal = 0L;
char *pointer;
for (i=0, pointer=string+point; i<length; i++, pointer++)
{
decimal += (*pointer-'0')<<(length-1-i);
}
return (decimal);
}
/************************************************
** Functino: To calculate object value **
** Variables: None **
** Note: For different problem, user must **
** change these code. This example is **
** dealing with Rosenbrock function. **
** f(x1,x2)=100*(x1^2-x2)^2+(1-x1)^2 **
** Its maximal value is: **
** f(-2.048, -2.048) = 3905.926227 **
************************************************/
void CalculateObjectValue(void)
{
int i;
long temp1, temp2;
double x1, x2;
// Rosenbrock function
for (i=0; i<PopSize; i++)
{
temp1=DecodeChromosome(population[i].chrom, 0, LENGTH1);
temp2=DecodeChromosome(population[i].chrom, LENGTH1,LENGTH2);
x1=4.096*temp1/1023.0-2.048;
x2=4.096*temp2/1023.0-2.048;
population[i].value=100*(x1*x1-x2)*(x1*x1-x2)+(1-x1)*(1-x1);
}
}
/************************************************
** Functino: To calculate the fitness value **
** Variables: None **
************************************************/
void CalculateFitnessValue(void)
{
int i;
double temp;
for (i=0; i<PopSize; i++)
{
if (FunctionMode == MAXIMIZATION)
{
if ((population[i].value+Cmin)>0.0)
{
temp=Cmin+population[i].value;
}else
{
temp =0.0;
}
}else if (FunctionMode == MINIMIZATION)
{
if (population[i].value<Cmax)
{
temp=Cmax-population[i].value;
}else
{
temp = 0.0;
}
}
population[i].fitness=temp;
}
}
/************************************************
** Functino: To find out the best individual **
** so far current generation. **
** Variables: None **
************************************************/
void FindBestAndWorstIndividual(void)
{
int i;
double sum=0.0;
// find out the best and wrost individual of this generation
bestindividual=population[0];
worstindividual=population[0];
for (i=1; i<PopSize; i++)
{
if (population[i].fitness > bestindividual.fitness)
{
bestindividual=population[i];
best_index=i;
}else if (population[i].fitness < worstindividual.fitness)
{
worstindividual=population[i];
worst_index=i;
}
sum += population[i].fitness;
}
// find out the best individual so far
if (generation == 0) // initialize the best individual
{
currentbest = bestindividual;
}else if (bestindividual.fitness>currentbest.fitness)
{
currentbest = bestindividual;
}
}
/************************************************
** Functino: To perform evolution operation **
** based on elitise model. Elitist **
** model is to replace the worst **
** individual of this generation **
** by the current best one. **
** Variables: None **
************************************************/
void PerformEvolution(void)
{
if (bestindividual.fitness > currentbest.fitness)
{
currentbest = population[best_index];
}else
population[worst_index] = currentbest;
}
/************************************************
** Functino: To reproduce a chromosome by **
** proportional selection. **
** Variables: None **
************************************************/
void SelectionOperator(void)
{
int i, index;
double p, sum=0.0;
double cfitness[POPSIZE]; // cumulative fitness value
struct individual newpopulation[POPSIZE];
// calculate relative fitness
for (i=0; i<PopSize; i++)
sum += population[i].fitness;
for (i=0; i<PopSize; i++)
cfitness[i] = population[i].fitness/sum;
// calculate cumulative fitness
for (i=1; i<PopSize; i++)
cfitness[i] = cfitness[i-1]+cfitness[i];
// selection operation
for (i=0; i<PopSize; i++)
{
/* Seed the random-number generator with current time so that
* the numbers will be different every time we run.
*/
//srand( (unsigned)time(NULL) );
p =rand()%1000/1000.0;
index=0;
while(p>cfitness[index])
index++;
newpopulation[i] = population[index];
}
for (i=0; i< PopSize; i++)
population[i] = newpopulation[i];
}
/************************************************
** Functino: Crossover two chromosome by **
** means of one-point crossover **
** Variables: None **
************************************************/
void CrossoverOperator(void)
{
int i,j;
int index[POPSIZE];
int point, temp;
double p;
char ch;
// make a pair of individual randomly
for (i=0; i<PopSize; i++)
index[i]=i;
for (i=0; i<PopSize; i++)
{
point = rand()%(PopSize-i);
temp = index[i];
index[i] = index[point+i];
index[point+i] = temp;
}
// one-point crossover operation
for (i=0; i<PopSize-1; i+=2)
{
p = rand()%1000/1000.0;
if (p<Pc)
{
//point = random(CHROMLENGTH-1)+1;
point = rand()%(CHROMLENGTH-1)+1;
for (j=point; j<CHROMLENGTH; j++)
{
ch = population[index[i]].chrom[j];
population[index[i]].chrom[j] = population[index[i+1]].chrom[j];
population[index[i+1]].chrom[j] = ch;
}
}
}
}
/************************************************
** Functino: Mutation of a chromosome. **
** Variables: None **
************************************************/
void MutationOperator(void)
{
int i, j;
double p;
// bit mutation;
for (i=0; i<PopSize; i++)
{
for (j=0; j<CHROMLENGTH; j++)
{
p = rand()%1000/1000.0;
if (p<Pm)
population[i].chrom[j]=(population[i].chrom[j]=='0')?'1':'0';
}
}
}
/************************************************
** Functino: Output the results of current **
** population. **
** Variables: None **
************************************************/
void OutputTextReport(void)
{
int i;
double sum; // temporary sum
double average; // average of population object value
// calculate average object value
sum = 0.0;
for (i=0; i<PopSize; i++)
sum += population[i].value;
average = sum/PopSize;
// print results of this population
printf("gen=%d, avg+%f, best=%f,", generation, average, currentbest.value);
printf("chromosome=");
for (i=0; i<CHROMLENGTH; i++)
printf("%c", currentbest.chrom[i]);
printf("\n");
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -