📄 trootj_cpp.txt
字号:
/* -------------------------------------------------------------------------
! Program to calculate the first zeroes (root abscissas) of the first
! kind Bessel function of integer order N using the subroutine ROOTJ.
! --------------------------------------------------------------------------
! SAMPLE RUN:
!
! (Calculate the first 10 zeroes of 1st kind Bessel function of order 2).
!
! Zeroes of Bessel Function of order: 2
!
! Number of calculated zeroes: 10
!
! Table of root abcissas (5 items per line)
! 5.135622 8.417244 11.619841 14.795952 17.959819
21.116997 24.270112 27.420574 30.569204 33.716520
!
! Table of error codes (5 items per line)
! 0 0 0 0 0
! 0 0 0 0 0
!
! --------------------------------------------------------------------------
! Reference: From Numath Library By Tuan Dang Trong in Fortran 77.
!
! C++ Release 1.0 By J-P Moreau, Paris
! ------------------------------------------------------------------------ */
#include <stdio.h>
#include <math.h>
#define SIZE 11
double JZ[SIZE];
int IE[SIZE];
int i,j, N,NR;
void SECANT(int N,int NITMX, double TOL, double *ZEROJ, int *IER);
double BESSJ(int N, double X);
double BESSJ0(double X);
double BESSJ1(double X);
double Sign(double a, double b) {
if (b>=0.0) return (fabs(a));
else return (-fabs(a));
}
//----------------------------------------------------------------------
void ROOTJ(int N, int NK, double *JZERO, int *IER) {
/*----------------------------------------------------------------------
! CALCULATE THE FIRST NK ZEROES OF BESSEL FUNCTION J(N,X)
!
! INPUTS:
! N ORDER OF FUNCTION J (INTEGER >= 0) I*4
! NK NUMBER OF FIRST ZEROES (INTEGER > 0) I*4
! OUTPUTS:
! JZERO(NK) TABLE OF FIRST ZEROES (ABCISSAS) R*8
! IER(NK) TABLE OF ERROR CODES (MUST BE ZEROES) I*4
!
! REFERENCE :
! ABRAMOWITZ M. & STEGUN IRENE A.
! HANDBOOK OF MATHEMATICAL FUNCTIONS
! -------------------------------------------------------------------- */
double ZEROJ,B0,B1,B2,B3,B5,B7,T0,T1,T3,T5,T7,FN,FK;
double C1,C2,C3,C4,C5,F1,F2,F3,TOL,ERRJ, PI;
int IERROR,K,NITMX;
TOL=1E-8; NITMX=10; PI=4.0*atan(1.0);
C1=1.8557571; C2=1.033150; C3=0.00397; C4=0.0908; C5=0.043;
FN = 1.0*N;
// FIRST ZERO
if (N==0) {
ZEROJ = C1+C2-C3-C4+C5;
SECANT(N,NITMX,TOL,&ZEROJ,&IERROR);
IER[1]=IERROR;
JZERO[1]=ZEROJ;
}
else {
F1 = pow(FN,(1.0/3.0));
F2 = F1*F1*FN;
F3 = F1*FN*FN;
ZEROJ = FN+C1*F1+(C2/F1)-(C3/FN)-(C4/F2)+(C5/F3);
SECANT(N,NITMX,TOL,&ZEROJ,&IERROR);
IER[1]=IERROR;
JZERO[1]=ZEROJ;
}
T0 = 4.0*FN*FN;
T1 = T0-1.0;
T3 = 4.0*T1*(7.0*T0-31.0);
T5 = 32.0*T1*((83.0*T0-982.0)*T0+3779.0);
T7 = 64.0*T1*(((6949.0*T0-153855.0)*T0+1585743.0)*T0-6277237.0);
// OTHER ZEROES
for (K = 2; K <= NK; K++) {
JZERO[K] = 0.0;
FK = 1.0*K;
// MAC MAHON'S SERIES FOR K>>N
B0 = (FK+0.5*FN-0.25)*PI;
B1 = 8.0*B0;
B2 = B1*B1;
B3 = 3.0*B1*B2;
B5 = 5.0*B3*B2;
B7 = 7.0*B5*B2;
ZEROJ = B0-(T1/B1)-(T3/B3)-(T5/B5)-(T7/B7);
ERRJ=fabs(BESSJ(N,ZEROJ));
// IMPROVE SOLUTION USING PROCEDURE SECANT
if (ERRJ > TOL) SECANT(N,NITMX,TOL,&ZEROJ,&IERROR);
JZERO[K]=ZEROJ;
IER[K]=IERROR;
}
}
// ------------------------------------------------------------------------------
void SECANT(int N,int NITMX, double TOL, double *ZEROJ, int *IER) {
//Labels: e5,e10,e15,e20
double P0,P1,Q0,Q1,DP,P;
double C[3];
int IT,NEV,NTRY;
C[1]=0.95; C[2]=0.999;
NTRY=1;
*IER=0;
e5: P0 = C[NTRY]*(*ZEROJ);
P1 = *ZEROJ;
NEV = 2;
Q0 = BESSJ(N,P0);
Q1 = BESSJ(N,P1);
for (IT = 1; IT <= NITMX; IT++) {
if (Q1==Q0) goto e15;
P = P1-Q1*(P1-P0)/(Q1-Q0);
DP = P-P1;
if (IT==1) goto e10;
if (fabs(DP) < TOL) goto e20;
e10: NEV = NEV+1;
P0 = P1;
Q0 = Q1;
P1 = P;
Q1 = BESSJ(N,P1);
}
e15: NTRY++;
if (NTRY <= 2) goto e5;
*IER = NTRY;
e20: *ZEROJ = P;
}
// --------------------------------------------------------------------
double BESSJ(int N, double X) {
/* THIS FUNCTION RETURNS THE VALUE OF THE FIRST KIND BESSEL FUNCTION
OF ORDER N, INTEGER FOR ANY REAL X. WE USE HERE THE CLASSICAL
RECURRENT FORMULA, WHEN X > N. FOR X < N, THE MILLER'S ALGORITHM
IS USED TO AVOID OVERFLOWS.
REFERENCE :
C.W.CLENSHAW, CHEBYSHEV SERIES FOR MATHEMATICAL FUNCTIONS,
MATHEMATICAL TABLES, VOL.5, 1962. */
int IACC = 40;
double BIGNO = 1e10, BIGNI = 1E-10;
double TOX,BJM,BJ,BJP,SUM,TMP;
int J,JSUM,M;
if (N==0) return BESSJ0(X);
if (N==1) return BESSJ1(X);
if (X==0.0) return 0.0;
TOX = 2.0/X;
if (X > N) {
BJM = BESSJ0(X);
BJ = BESSJ1(X);
for (J = 1; J<N; J++) {
BJP = J*TOX*BJ-BJM;
BJM = BJ;
BJ = BJP;
TMP = BJ;
}
return TMP;
}
else {
M = (int) (2*((N+floor(sqrt(IACC*N))) / 2));
TMP = 0.0;
JSUM = 0;
SUM = 0.0;
BJP = 0.0;
BJ = 1.0;
for (J = M; J>0; J--) {
BJM = J*TOX*BJ-BJP;
BJP = BJ;
BJ = BJM;
if (fabs(BJ) > BIGNO) {
BJ *= BIGNI;
BJP *= BIGNI;
TMP *= BIGNI;
SUM *= BIGNI;
}
if (JSUM != 0) SUM += BJ;
JSUM = 1-JSUM;
if (J == N) TMP = BJP;
SUM = 2.0*SUM-BJ;
}
return (TMP/SUM);
}
}
// ----------------------------------------------------------------------
double BESSJ0(double X) {
/* THIS FUNCTION RETURNS THE VALUE OF THE FIRST KIND BESSEL FUNCTION
OF ORDER 0 FOR ANY REAL X. WE USE HERE THE POLYNOMIAL APPROXIMATION
BY SERIES OF CHEBYSHEV POLYNOMIALS FOR 0<X<8 AND 0<8/X<1.
REFERENCES :
M.ABRAMOWITZ,I.A.STEGUN, HANDBOOK OF MATHEMATICAL FUNCTIONS, 1965.
C.W.CLENSHAW, NATIONAL PHYSICAL LABORATORY MATHEMATICAL TABLES,
VOL.5, 1962. */
double AX,FR,FS,Z,FP,FQ,TMP,XX;
double Y,P1,P2,P3,P4,P5,R1,R2,R3,R4,R5,R6,Q1,Q2,Q3,Q4,Q5,S1,S2,S3,S4,S5,S6;
P1=1.0; P2=-0.1098628627E-2; P3=0.2734510407E-4;
P4=-0.2073370639E-5; P5=0.2093887211E-6;
Q1=-0.1562499995E-1; Q2=0.1430488765E-3; Q3=-0.6911147651E-5;
Q4=0.7621095161E-6; Q5=-0.9349451520E-7;
R1=57568490574.0; R2=-13362590354.0; R3=651619640.7;
R4=-11214424.18; R5=77392.33017; R6=-184.9052456;
S1=57568490411.0; S2=1029532985.0; S3=9494680.718;
S4=59272.64853; S5=267.8532712; S6=1.0;
if (X==0.0) return 1.0;
AX = fabs(X);
if (AX < 8) {
Y = X*X;
FR = R1+Y*(R2+Y*(R3+Y*(R4+Y*(R5+Y*R6))));
FS = S1+Y*(S2+Y*(S3+Y*(S4+Y*(S5+Y*S6))));
TMP = FR/FS;
}
else {
Z = 8./AX;
Y = Z*Z;
XX = AX-0.785398164;
FP = P1+Y*(P2+Y*(P3+Y*(P4+Y*P5)));
FQ = Q1+Y*(Q2+Y*(Q3+Y*(Q4+Y*Q5)));
TMP = sqrt(0.636619772/AX)*(FP*cos(XX)-Z*FQ*sin(XX));
}
return TMP;
}
// ----------------------------------------------------------------------
double BESSJ1(double X) {
/* THIS FUNCTION RETURNS THE VALUE OF THE FIRST KIND BESSEL FUNCTION
OF ORDER 0 FOR ANY REAL X. WE USE HERE THE POLYNOMIAL APPROXIMATION
BY SERIES OF CHEBYSHEV POLYNOMIALS FOR 0<X<8 AND 0<8/X<1.
REFERENCES :
M.ABRAMOWITZ,I.A.STEGUN, HANDBOOK OF MATHEMATICAL FUNCTIONS, 1965.
C.W.CLENSHAW, NATIONAL PHYSICAL LABORATORY MATHEMATICAL TABLES,
VOL.5, 1962. */
double AX,FR,FS,Z,FP,FQ,TMP,XX;
double Y,P1,P2,P3,P4,P5,P6,R1,R2,R3,R4,R5,R6,Q1,Q2,Q3,Q4,Q5,S1,S2,S3,S4,S5,S6;
P1=1.0; P2=0.183105E-2; P3=-0.3516396496E-4;
P4=0.2457520174E-5; P5=-0.240337019E-6; P6=0.636619772;
Q1=0.04687499995; Q2=-0.2002690873E-3; Q3=0.8449199096E-5;
Q4=-0.88228987E-6; Q5=0.105787412E-6;
R1=72362614232.0; R2=-7895059235.0; R3=242396853.1;
R4=-2972611.439; R5=15704.48260; R6=-30.16036606;
S1=144725228442.0; S2=2300535178.0; S3=18583304.74;
S4=99447.43394; S5=376.9991397; S6=1.0;
AX = fabs(X);
if (AX < 8) {
Y = X*X;
FR = R1+Y*(R2+Y*(R3+Y*(R4+Y*(R5+Y*R6))));
FS = S1+Y*(S2+Y*(S3+Y*(S4+Y*(S5+Y*S6))));
TMP = X*(FR/FS);
}
else {
Z = 8./AX;
Y = Z*Z;
XX = AX-2.35619491;
FP = P1+Y*(P2+Y*(P3+Y*(P4+Y*P5)));
FQ = Q1+Y*(Q2+Y*(Q3+Y*(Q4+Y*Q5)));
TMP = sqrt(P6/AX)*(cos(XX)*FP-Z*sin(XX)*FQ)*Sign(S6,X);
}
return TMP;
}
void main() {
N=2;
NR=10;
ROOTJ(N,NR,JZ,IE);
printf("\n Zeroes of Bessel Function of order: %d\n\n", N);
printf(" Number of calculated zeroes: %d\n\n", NR);
printf(" Table of root abcissas (5 items per line)\n");
j=1;
for (i=1; i<=NR; i++) {
printf("%12.6f", JZ[i]); j++;
if (j % 6 == 0) {
printf("\n"); j=1;
}
}
printf("\n Table of error codes (5 items per line)\n");
j=1;
for (i=1; i<=NR; i++) {
printf(" %d",IE[i]); j++;
if (j % 6 == 0) {
printf("\n"); j=1;
}
};
printf("\n");
}
// end of file trootj.cpp
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -