📄 gjelim.m
字号:
function gjelim(P)
%GJELIM
%Gauss-Jordan elimination.
%Options: rational number format
% count of operations
% all steps
%Calling format: gjelim(A)
%Can use given tolerance of 1e-20
%or change to own tolerance
%MATLAB computes to about 16 decimal digits
%Copyright Gareth Williams, Stetson University
%gwilliam@stetson.edu, http://www.stetson.edu/~gwilliam
%Accompanies "Linear Algebra with Applications" by Gareth Williams
%Initial values
adds=0;totadds=0;mults=0;totmults=0;swaps=0;totswaps=0;
ops=[0];
%hold off
%default graphics window mode
tol=1e-20;
[n,m]=size(P);
format compact
disp(' ')
h=input('Rational numbers? y/n: ','s');
q=input('Count of operations? y/n: ','s');
g=input('All steps? y/n: ','s');
disp(' ')
disp('initial matrix')
if h=='y'
disp(rats(P))
else
disp(P)
end
if g=='y';
disp('[press Enter at each step to continue]')
disp(' ')
pause
end
%find a pivot
j=1;
for i=1:n,
if j <= m
found=0;
if abs(P(i, j)) <= tol %end is in line 101
while (found == 0) %over 2 spaces since 1st part of
% if-else-end, lines 99,101
%search for a leading one and interchange rows if necessary
for s=i:n,
if (abs(P(s, j)) > tol)
if (found == 0)
found=1;
if s~=i
for r=j:m,
temp=P(i, r);
P(i, r)=P(s, r);
P(s, r) = temp;
end
swaps = m-j+1;
totswaps = totswaps + swaps;
if g=='y'; %allsteps
disp('swap rows')
if h=='y'
disp(rats(P))
else
disp(P)
end
if q=='y'
disp('element swaps:')
disp(swaps)
end
disp('--------------------')
pause
end %allsteps
end
end
end
end
if (found==0)
if (j <= m)
j = j + 1;
end
end
if j>m
found=1;
end
end %of while loop, line 52
if j > m
found = 0;
end
else
found = 1;
end %starts line 51
%normalize leading element in row changing the rest of the row accordingly
if found == 1
k=i;
if (P(k, j) ~= 1)
if (abs(P(k, j)) > tol)
y = P(i, j);
for l=j:m,
P(k, l) = P(k, l)/y ;
end
mults = m-j;
totmults = totmults + mults;
if g=='y'; %allsteps
disp('normalize')
if h=='y'
disp(rats(P))
else
disp(P)
end
if q=='y'
disp('multiplications:')
disp(mults)
end
disp('--------------------')
pause
end %allsteps
end
end
for r=1:n,
if (abs(P(r, j)) >tol)
if (r ~= i)
z=P(r, j);
for c=j:m,
P(r, c)=P(r, c) - z * P(i, c);
end
adds = m-j;
mults = m-j;
totadds = totadds + adds;
totmults = totmults + mults;
if g=='y'; %allsteps
disp('create zero')
if h=='y'
disp(rats(P))
else
disp(P)
end
if q=='y'
disp('additions, multiplications:')
ops=[adds mults];
disp(ops)
end
disp('--------------------')
pause
end %allsteps
end
end
end
end
j = j + 1;
end
end %end i loop
%print out final matrix
disp('-reduced echelon form-')
if h=='y'
disp(rats(P))
else
disp(P)
end
if q=='y'
disp('Total additions, multiplications, element-swaps:')
ops=[totadds totmults totswaps];
disp(ops)
disp('--------------------')
end
disp(' ')
format loose
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -