📄 stm8s_tim1.c
字号:
* None
* @par Example:
* Initialize the TIM1 Channel4 according to specified parameters.
* @code
* TIM1_OCMode_TypeDef My_OCMode = TIM1_OCMODE_PWM1;
* TIM1_OutputState_TypeDef My_OutputState = TIM1_OUTPUTSTATE_ENABLE;
* u16 My_Pulse = 0x3FFF;
* TIM1_OCPolarity_TypeDef My_OCPolarity = TIM1_OCPOLARITY_HIGH;
* TIM1_OCIdleState_TypeDef My_OCIdleState = TIM1_OCIDLESTATE_RESET;
* TIM1_OC1Init( My_OCMode, My_OutputState, My_Pulse, My_OCPolarity, My_OCIdleState);
* @endcode
*/
void TIM1_OC4Init(TIM1_OCMode_TypeDef TIM1_OCMode,
TIM1_OutputState_TypeDef TIM1_OutputState,
u16 TIM1_Pulse,
TIM1_OCPolarity_TypeDef TIM1_OCPolarity,
TIM1_OCIdleState_TypeDef TIM1_OCIdleState)
{
/* Check the parameters */
assert_param(IS_TIM1_OC_MODE_OK(TIM1_OCMode));
assert_param(IS_TIM1_OUTPUT_STATE_OK(TIM1_OutputState));
assert_param(IS_TIM1_OC_POLARITY_OK(TIM1_OCPolarity));
assert_param(IS_TIM1_OCIDLE_STATE_OK(TIM1_OCIdleState));
/* Disable the Channel 4: Reset the CCE Bit */
TIM1->CCER2 &= (u8)(~(TIM1_CCER2_CC4E | TIM1_CCER2_CC4P));
/* Set the Output State & the Output Polarity */
TIM1->CCER2 |= (u8)((TIM1_OutputState & TIM1_CCER2_CC4E ) | (TIM1_OCPolarity & TIM1_CCER2_CC4P ));
/* Reset the Output Compare Bit and Set the Ouput Compare Mode */
TIM1->CCMR4 = (u8)((TIM1->CCMR4 & (u8)(~TIM1_CCMR_OCM)) | (TIM1_OCMode));
/* Set the Output Idle state */
if (TIM1_OCIdleState != TIM1_OCIDLESTATE_RESET)
{
TIM1->OISR |= (u8)(~TIM1_CCER2_CC4P);
}
else
{
TIM1->OISR &= (u8)(~TIM1_OISR_OIS4);
}
/* Set the Pulse value */
TIM1->CCR4H = (u8)(TIM1_Pulse >> 8);
TIM1->CCR4L = (u8)(TIM1_Pulse);
}
/**
* @brief Configures the Break feature, dead time, Lock level, the OSSI,
* and the AOE(automatic output enable).
* @param[in] TIM1_OSSIState specifies the OSSIS State from @ref TIM1_OSSIState_TypeDef.
* @param[in] TIM1_LockLevel specifies the lock level from @ref TIM1_LockLevel_TypeDef.
* @param[in] TIM1_DeadTime specifies the dead time value.
* @param[in] TIM1_Break specifies the Break state @ref TIM1_BreakState_TypeDef.
* @param[in] TIM1_BreakPolarity specifies the Break polarity from @ref TIM1_BreakPolarity_TypeDef.
* @param[in] TIM1_AutomaticOutput specifies the Automatic Output configuration from @ref TIM1_AutomaticOutput_TypeDef.
* @retval void None
* @par Required preconditions:
* None
* @par Called functions:
* None
* @par Example:
* Configure TIM1 according to specified parameters.
* @code
* TIM1_OSSIState_TypeDef My_OSSIState = TIM1_OSSISTATE_DISABLE;
* TIM1_LockLevel_TypeDef My_LockLevel = TIM1_LOCKLEVEL_OFF;
* u8 My_DeadTime = 0x00;
* TIM1_BreakState_TypeDef My_Break = TIM1_BREAK_ENABLE;
* TIM1_BreakPolarity_TypeDef My_BreakPolarity = TIM1_BREAKPOLARITY_LOW;
* TIM1_AutomaticOutput_TypeDef My_AutomaticOutput = TIM1_AUTOMATICOUTPUT_DISABLE;
* TIM1_BDTRConfig(TIM1_OSSIState, TIM1_LockLevel_TypeDef TIM1_LockLevel, My_DeadTime, My_Break, My_BreakPolarity, My_AutomaticOutput);
* @endcode
*/
void TIM1_BDTRConfig(TIM1_OSSIState_TypeDef TIM1_OSSIState,
TIM1_LockLevel_TypeDef TIM1_LockLevel,
u8 TIM1_DeadTime,
TIM1_BreakState_TypeDef TIM1_Break,
TIM1_BreakPolarity_TypeDef TIM1_BreakPolarity,
TIM1_AutomaticOutput_TypeDef TIM1_AutomaticOutput)
{
/* Check the parameters */
assert_param(IS_TIM1_OSSI_STATE_OK(TIM1_OSSIState));
assert_param(IS_TIM1_LOCK_LEVEL_OK(TIM1_LockLevel));
assert_param(IS_TIM1_BREAK_STATE_OK(TIM1_Break));
assert_param(IS_TIM1_BREAK_POLARITY_OK(TIM1_BreakPolarity));
assert_param(IS_TIM1_AUTOMATIC_OUTPUT_STATE_OK(TIM1_AutomaticOutput));
TIM1->DTR = (u8)(TIM1_DeadTime);
/* Set the Lock level, the Break enable Bit and the Ploarity, the OSSI State,
the dead time value and the Automatic Output Enable Bit */
TIM1->BKR = (u8)((u8)TIM1_OSSIState | \
(u8)TIM1_LockLevel | \
(u8)TIM1_Break | \
(u8)TIM1_BreakPolarity | \
(u8)TIM1_AutomaticOutput);
}
/**
* @brief Initializes the TIM1 peripheral according to the specified parameters.
* @param[in] TIM1_Channel specifies the input capture channel from TIM1_Channel_TypeDef.
* @param[in] TIM1_ICPolarity specifies the Input capture polarity from TIM1_ICPolarity_TypeDef .
* @param[in] TIM1_ICSelection specifies the Input capture source selection from TIM1_ICSelection_TypeDef.
* @param[in] TIM1_ICPrescaler specifies the Input capture Prescaler from TIM1_ICPSC_TypeDef.
* @param[in] TIM1_ICFilter specifies the Input capture filter value.
* @retval void None
* @par Required preconditions:
* None
* @par Called functions:
* TI1_Config
* TI2_Config
* TI3_Config
* TI4_Config
* TIM1_SetIC1Prescaler
* TIM1_SetIC2Prescaler
* TIM1_SetIC3Prescaler
* TIM1_SetIC4Prescaler
* @par Example:
* Configure the TIM1 Input Capture according to specified parameters.
* @code
* TIM1_Channel_TypeDef My_Channel = TIM1_CHANNEL_1;
* TIM1_ICPolarity_TypeDef My_ICPolarity = TIM1_ICPOLARITY_RISING;
* TIM1_ICSelection_TypeDef My_ICSelection = TIM1_ICSELECTION_DIRECTTI;
* TIM1_ICPSC_TypeDef My_ICPrescaler = TIM1_ICPSC_DIV1;
* u8 My_ICFilter = 0x00;
* TIM1_ICInit( My_Channel, My_ICPolarity, My_ICSelection, My_ICPrescaler, My_ICFilter);
* @endcode
*/
void TIM1_ICInit(TIM1_Channel_TypeDef TIM1_Channel,
TIM1_ICPolarity_TypeDef TIM1_ICPolarity,
TIM1_ICSelection_TypeDef TIM1_ICSelection,
TIM1_ICPSC_TypeDef TIM1_ICPrescaler,
u8 TIM1_ICFilter)
{
/* Check the parameters */
assert_param(IS_TIM1_CHANNEL_OK(TIM1_Channel));
assert_param(IS_TIM1_IC_POLARITY_OK(TIM1_ICPolarity));
assert_param(IS_TIM1_IC_SELECTION_OK(TIM1_ICSelection));
assert_param(IS_TIM1_IC_PRESCALER_OK(TIM1_ICPrescaler));
assert_param(IS_TIM1_IC_FILTER_OK(TIM1_ICFilter));
if (TIM1_Channel == TIM1_CHANNEL_1)
{
/* TI1 Configuration */
TI1_Config(TIM1_ICPolarity,
TIM1_ICSelection,
TIM1_ICFilter);
/* Set the Input Capture Prescaler value */
TIM1_SetIC1Prescaler(TIM1_ICPrescaler);
}
else if (TIM1_Channel == TIM1_CHANNEL_2)
{
/* TI2 Configuration */
TI2_Config(TIM1_ICPolarity,
TIM1_ICSelection,
TIM1_ICFilter);
/* Set the Input Capture Prescaler value */
TIM1_SetIC2Prescaler(TIM1_ICPrescaler);
}
else if (TIM1_Channel == TIM1_CHANNEL_3)
{
/* TI3 Configuration */
TI3_Config(TIM1_ICPolarity,
TIM1_ICSelection,
TIM1_ICFilter);
/* Set the Input Capture Prescaler value */
TIM1_SetIC3Prescaler(TIM1_ICPrescaler);
}
else
{
/* TI4 Configuration */
TI4_Config(TIM1_ICPolarity,
TIM1_ICSelection,
TIM1_ICFilter);
/* Set the Input Capture Prescaler value */
TIM1_SetIC4Prescaler(TIM1_ICPrescaler);
}
}
/**
* @brief Configures the TIM1 peripheral in PWM Input Mode according to the specified parameters.
* @param[in] TIM1_Channel specifies the input capture channel from TIM1_Channel_TypeDef.
* @param[in] TIM1_ICPolarity specifies the Input capture polarity from TIM1_ICPolarity_TypeDef .
* @param[in] TIM1_ICSelection specifies the Input capture source selection from TIM1_ICSelection_TypeDef.
* @param[in] TIM1_ICPrescaler specifies the Input capture Prescaler from TIM1_ICPSC_TypeDef.
* @param[in] TIM1_ICFilter specifies the Input capture filter value.
* @retval void None
* @par Required preconditions:
* None
* @par Called functions:
* TI1_Config
* TI2_Config
* TIM1_SetIC1Prescaler
* TIM1_SetIC2Prescaler
* @par Example:
* Configure the TIM1 peripheral in PWM Input Mode according to specified parameters.
* @code
* TIM1_Channel_TypeDef My_Channel = TIM1_CHANNEL_1;
* TIM1_ICPolarity_TypeDef My_ICPolarity = TIM1_ICPOLARITY_RISING;
* TIM1_ICSelection_TypeDef My_ICSelection = TIM1_ICSELECTION_DIRECTTI;
* TIM1_ICPSC_TypeDef My_ICPrescaler = TIM1_ICPSC_DIV1;
* u8 My_ICFilter = 0x00;
* TIM1_PWMIConfig( My_Channel, My_ICPolarity, My_ICSelection, My_ICPrescaler, My_ICFilter);
* @endcode
*/
void TIM1_PWMIConfig(TIM1_Channel_TypeDef TIM1_Channel,
TIM1_ICPolarity_TypeDef TIM1_ICPolarity,
TIM1_ICSelection_TypeDef TIM1_ICSelection,
TIM1_ICPSC_TypeDef TIM1_ICPrescaler,
u8 TIM1_ICFilter)
{
u8 icpolarity = TIM1_ICPOLARITY_RISING;
u8 icselection = TIM1_ICSELECTION_DIRECTTI;
/* Check the parameters */
assert_param(IS_TIM1_PWMI_CHANNEL_OK(TIM1_Channel));
assert_param(IS_TIM1_IC_POLARITY_OK(TIM1_ICPolarity));
assert_param(IS_TIM1_IC_SELECTION_OK(TIM1_ICSelection));
assert_param(IS_TIM1_IC_PRESCALER_OK(TIM1_ICPrescaler));
/* Select the Opposite Input Polarity */
if (TIM1_ICPolarity != TIM1_ICPOLARITY_FALLING)
{
icpolarity = TIM1_ICPOLARITY_FALLING;
}
else
{
icpolarity = TIM1_ICPOLARITY_RISING;
}
/* Select the Opposite Input */
if (TIM1_ICSelection == TIM1_ICSELECTION_DIRECTTI)
{
icselection = TIM1_ICSELECTION_INDIRECTTI;
}
else
{
icselection = TIM1_ICSELECTION_DIRECTTI;
}
if (TIM1_Channel == TIM1_CHANNEL_1)
{
/* TI1 Configuration */
TI1_Config(TIM1_ICPolarity, TIM1_ICSelection,
TIM1_ICFilter);
/* Set the Input Capture Prescaler value */
TIM1_SetIC1Prescaler(TIM1_ICPrescaler);
/* TI2 Configuration */
TI2_Config(icpolarity, icselection, TIM1_ICFilter);
/* Set the Input Capture Prescaler value */
TIM1_SetIC2Prescaler(TIM1_ICPrescaler);
}
else
{
/* TI2 Configuration */
TI2_Config(TIM1_ICPolarity, TIM1_ICSelection,
TIM1_ICFilter);
/* Set the Input Capture Prescaler value */
TIM1_SetIC2Prescaler(TIM1_ICPrescaler);
/* TI1 Configuration */
TI1_Config(icpolarity, icselection, TIM1_ICFilter);
/* Set the Input Capture Prescaler value */
TIM1_SetIC1Prescaler(TIM1_ICPrescaler);
}
}
/**
* @brief Enables or disables the TIM1 peripheral.
* @param[in] NewState new state of the TIM1 peripheral. This parameter can
* be ENABLE or DISABLE.
* @retval void None
* @par Required preconditions:
* None
* @par Called functions:
* None
* @par Example:
* Enable the TIM1 peripheral.
* @code
* TIM1_Cmd(ENABLE);
* @endcode
*/
void TIM1_Cmd(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONALSTATE_OK(NewState));
/* set or Reset the CEN Bit */
if (NewState != DISABLE)
{
TIM1->CR1 |= TIM1_CR1_CEN;
}
else
{
TIM1->CR1 &= (u8)(~TIM1_CR1_CEN);
}
}
/**
* @brief Enables or disables the TIM1 peripheral Main Outputs.
* @param[in] NewState new state of the TIM1 peripheral. This parameter can
* be ENABLE or DISABLE.
* @retval void None
* @par Required preconditions:
* None
* @par Called functions:
* None
* @par Example:
* Enable the TIM1 peripheral Main Outputs.
* @code
* TIM1_CtrlPWMOutputs(ENABLE);
* @endcode
*/
void TIM1_CtrlPWMOutputs(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONALSTATE_OK(NewState));
/* Set or Reset the MOE Bit */
if (NewState != DISABLE)
{
TIM1->BKR |= TIM1_BKR_MOE;
}
else
{
TIM1->BKR &= (u8)(~TIM1_BKR_MOE);
}
}
/**
* @brief Enables or disables the specified TIM1 interrupts.
* @param[in] NewState new state of the TIM1 peripheral.
* This parameter can be: ENABLE or DISABLE.
* @param[in] TIM1_IT specifies the TIM1 interrupts sources to be enabled or disabled.
* This parameter can be any combination of the following values:
* - TIM1_IT_UPDATE: TIM1 update Interrupt source
* - TIM1_IT_CC1: TIM1 Capture Compare 1 Interrupt source
* - TIM1_IT_CC2: TIM1 Capture Compare 2 Interrupt source
* - TIM1_IT_CC3: TIM1 Capture Compare 3 Interrupt source
* - TIM1_IT_CC4: TIM1 Capture Compare 4 Interrupt source
* - TIM1_IT_CCUpdate: TIM1 Capture Compare Update Interrupt source
* - TIM1_IT_TRIGGER: TIM1 Trigger Interrupt source
* - TIM1_IT_BREAK: TIM1 Break Interrupt source
* @param[in] NewState new state of the TIM1 peripheral.
* @retval void None
* @par Required preconditions:
* None
* @par Called functions:
* None
* @par Example:
* Enable the TIM1_IT_UPDATE interrupt.
* @code
* TIM1_ITConfig(TIM1_IT_UPDATE, ENABLE);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -