📄 rfc3006.txt
字号:
compress the 40 bytes of IP/UDP/RTP header to 4 bytes (with high probability). To determine the worst-case (smallest) gain provided by compression, it can assume that the sender always sends maximum sized packets at 48 kbps, i.e., a 120 byte packet every 20 milliseconds. The router can conclude that these packets would be compressed to 84 bytes, yielding a token bucket rate of 33.6 kbps and a token bucket depth of 84 bytes as before. If the sender is willing to allow an independent calculation of compression gain by the router, the explicit compression factor may be omitted from the TSpec. Details of the TSpec encoding are provided below. To generalize the above discussion, assume that the Sender TSpec consists of values (r, b, p, M, m), that the explicit compression factor provided by the sender is f percent, and that the number of bytes saved by compression is N, independent of packet size. The parameters in the compressed TSpec would be: r' = r * f/100 b' = b * f/100 p' = p M' = M-N m' = m-N The calculations for r' and b' reflect that fact that f is expressed as a percentage and must therefore be divided by 100. The calculations for M' and m' hold only in the case where the compression algorithm reduces packets by a certain number of bytes independent of content or length of the packet, as is true for header compression. Other compression algorithms may not have this property. In determining the value of N, the router may need to make worst case assumptions about the number of bytes that may be removed by compression, which depends on such factors as the presence of UDP checksums and the linearity of RTP timestamps.Davie, et al. Standards Track [Page 5]RFC 3006 Integrated Services in Compressible Flows November 2000 All these adjusted values are used in the compressed TSpec. The router's admission control and resource allocation algorithms should behave as if the sender TSpec contained those values. [RFC 2205] provides a set of rules by which sender and receiver TSpecs are combined to calculate a single `effective' TSpec that is passed to admission control. When a reservation covering multiple senders is to be installed, it is necessary to reduce each sender TSpec by its appropriate compression factor. The set of sender TSpecs that apply to a single reservation on an interface are added together to form the effective sender TSpec, which is passed to traffic control. The effective receiver TSpec need not be modified; traffic control takes the greatest lower bound of these two TSpecs when making its admission control and resource allocation decisions. The handling of the receiver RSpec depends on whether controlled load or guaranteed service is used. In the case of controlled load, no additional processing of RSpec is needed. However, a guaranteed service RSpec contains a rate term R which does need to be adjusted downwards to account for compression. To determine how R should be adjusted, we note that the receiver has chosen R to meet a certain delay goal, and that the terms in the delay equation that depend on R are b/R and C/R (when the peak rate is large). The burstsize b in this case is the sum of the burstsizes of all the senders for this reservation, and each of these numbers has been scaled down by the appropriate compression factor. Thus, R should be scaled down using an average compression factor f_avg = (b1*f1 + b2*f2 + ... + bn*fn)/(b1 + b2 + ... bn) where bk is the burstsize of sender k and fk is the corresponding compression factor for this sender. Note that f_avg, like the individual fi's, is a percentage. Note also that this results in a compression factor of f in the case where all senders use the same compression factor f. To prevent an increase in delay caused by the C/R term when the reduced value of R is used for the reservation, it is necessary for this hop to `inflate' its value of C by dividing it by (f_avg/100). This will cause the contribution to delay made by this hop's C term to be what the receiver would expect when it chooses its value of R. There are certain risks in adjusting the resource requirements downwards for the purposes of admission control and resource allocation. Most compression algorithms are not completely deterministic, and thus there is a risk that a flow will turn out to be less compressible than had been assumed by admission control. This risk is reduced by the use of the explicit compression factor provided by the sender, and may be minimized if the router makesDavie, et al. Standards Track [Page 6]RFC 3006 Integrated Services in Compressible Flows November 2000 worst case assumptions about the amount of compression that may be achieved. This is somewhat analogous to the tradeoff between making worst case assumptions when performing admission control or making more optimistic assumptions, as in the case of measurement-based admission control. If a flow turns out to be less compressible that had been assumed when performing admission control, any extra traffic will need to be policed according to normal intserv rules. For example, if the router assumed that the 48 kbps stream above could be compressed to 33.6 kbps and it was ultimately possible to compress it to 35 kbps, the extra 1.4 kbps would be treated as excess. The exact treatment of such excess is service dependent. A similar scenario may arise if a sender claims that data for a certain session is compressible when in fact it is not, or overstates the extent of its compressibility. This might cause the flow to be erroneously admitted, and would cause insufficient resources to be allocated to it. To prevent such behavior from adversely affecting other reserved flows, any flow that sends a compressibility hint should be policed (in any router that has made use of the hint for its admission control) on the assumption that it is indeed compressible, i.e., using the compressed TSpec. That is, if the flow is found to be less compressible than advertised, the extra traffic that must be forwarded by the router above the compressed TSpec will be policed according to intserv rules appropriate for the service. Note that services that use the maximum datagram size M for policing purposes (e.g. guaranteed service [RFC 2210]) should continue to use the uncompressed value of M to allow for the possibility that some packets may not be successfully compressed. Note that RSVP does not generally require flows to be policed at every hop. To quote [RFC 2205]: Some QoS services may require traffic policing at some or all of (1) the edge of the network, (2) a merging point for data from multiple senders, and/or (3) a branch point where traffic flow from upstream may be greater than the downstream reservation being requested. RSVP knows where such points occur and must so indicate to the traffic control mechanism. For the purposes of policing, a router which makes use of the compressibility hint in a sender TSpec should behave as if it is at the edge of the network, because it is in a position to receive traffic from a sender that, while it passed through policing at the real network edge, may still need to be policed if the amount of data sent exceeds the amount described by the compressed TSpec.Davie, et al. Standards Track [Page 7]RFC 3006 Integrated Services in Compressible Flows November 20004. Object Format The compressibility hint may be included in the sender TSpec using the encoding rules of Appendix A in [RFC 2210]. The complete sender TSpec is as follows: 31 24 23 16 15 8 7 0 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1 | 0 (a) | reserved | 10 (b) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 2 | 1 (c) |0| reserved | 9 (d) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 3 | 127 (e) | 0 (f) | 5 (g) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 4 | Token Bucket Rate [r] (32-bit IEEE floating point number) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 5 | Token Bucket Size [b] (32-bit IEEE floating point number) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 6 | Peak Data Rate [p] (32-bit IEEE floating point number) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 7 | Minimum Policed Unit [m] (32-bit integer) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 8 | Maximum Packet Size [M] (32-bit integer) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 9 | 126 (h) | 0 (i) | 2 (j) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 10 | Hint (assigned number) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 11 | Compression factor [f] (32-bit integer) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ (a) - Message format version number (0) (b) - Overall length (10 words not including header) (c) - Service header, service number 1 (default/global information) (d) - Length of service 1 data, 9 words not including header (e) - Parameter ID, parameter 127 (Token_Bucket_TSpec) (f) - Parameter 127 flags (none set) (g) - Parameter 127 length, 5 words not including header (h) - Parameter ID, parameter 126 (Compression_Hint) (i) - Parameter 126 flags (none set) (j) - Parameter 126 length, 2 words not including header The difference between this TSpec and the one described in [RFC 2210] is that the overall length contained in the first word is increased by 3, as is the length of the `service 1 data', and the original TSpec parameters are followed by a new parameter, the compressibility hint. This parameter contains the standard parameter header, and anDavie, et al. Standards Track [Page 8]RFC 3006 Integrated Services in Compressible Flows November 2000 assigned number indicating the type of compression that is possible on this data. Different values of the hint would imply different compression algorithms may be applied to the data. Details of the numbering scheme for hints appear below. Following the hint value is the compression factor f, expressed as a 32 bit integer representing the factor as a percentage value. The valid range for this factor is (0,100]. A sender that does not know what value to use here or wishes to leave the compression factor calculation to the routers' discretion may use the reserved value 0 to indicate this fact. Zero is reserved because it is not possible to compress a data stream to zero bits per second. The value 100 indicates that no compression is expected on this stream. In some cases, additional quantitative information about the traffic may be required to enable a router to determine the amount of compression possible. In this case, a different encoding of the parameter would be required. In some cases it may be desirable to include more than one hint in a Tspec (e.g., because more than one compression scheme could be applied to the data.) In this case, multiple instances of parameter 126 may appear in the Tspec and the overall length of the Tspec and the length of the Service 1 data would be increased accordingly. Note that the Compression_Hint is, like the Token_Bucket_Tspec, not specific to a single service, and thus has a parameter value less than 128. It is also included as part of the default/global information (service number 1).4.1. Hint Numbering Hints are represented by a 32 bit field, with the high order 16 bits being the IP-compression-protocol number as defined in [RFC 1332] and
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -