📄 contents.m
字号:
% NMM toolbox: routines for numerical integration (quadrature)
%
% adaptGK Adaptive numerical integration using Gauss-Kronrod 7-15 rule
% adaptSimpson Adaptive numerical integration based on Simpson's rule
% adaptSimpsonTrace Adaptive numerical integration based on Simpson's rule, returns
% additional vector of x values where f(x) was evaluated
% compIntRules Compare trapezoid, simpson, and Gauss-Legendre quadrature rules
% demoAdaptGK Exercise adaptive Gauss-Kronrod quadrature and compare with quad8
% demoAdaptSimp Integrate humps(x) with adaptive Simpson's rule
% demoGauss Use Gauss-Legendre quadrature to integrate x*exp(-x) on [0,5]
% demoQuad Use built in quad and quad8 to integrate 'humps' function on [0,5]
% demoSimp Use composite Simpson's rule to integrate x*exp(-x) on [0,5]
% demoTrap Use composite trapezoidal rule to integrate x*exp(-x) on [0,5]
% expmx2 Evaluate exp(-x^2), where x is a scalar or vector
% gaussKronrod15 Gauss-Kronrod quadrature pair of order 7 and 15
% gaussLagQuad Gauss-Laguerre quadrature for integrals on [0,infinity)
% gaussQuad Composite Gauss-Legendre quadrature
% GLagNodeWt Nodes and weights for Gauss-Laguerre quadrature of arbitrary order
% by solving an eigenvalue problem
% GLagTable Nodes and weights for Gauss-Laguerre quadrature of order n<=25
% GLNodeWt Nodes and weights for Gauss-Legendre quadrature of arbitrary order
% obtained by solving an eigenvalue problem
% GLTable Nodes and weights for Gauss-Legendre quadrature of order n<=8
% humpInt Exact value of integral of humps function on [a,b]
% makeGLagTable Create a table of Gauss-Laguerre nodes and weights
% suitable for copy/paste into the GLagTable.m function
% makeGLTable Create a table of Gauss-Legendre nodes and weights
% suitable for copy/paste into the GLTable.m function
% plotSimpInt Graphical display of composite Simpson rule integration
% plotTrapInt Graphical display of composite trapezoid rule integration
% quadToInfinity Integral from 0 to infinity evaluated as sum of integrals
% on subintervals of x axis. Subintervals size increases
% geometrically from x = 0 to infinity. Sum is terminated when
% contribution from subintervals is less than tolerance.
% recursiveIndent Demonstration of a recursive function
% simpson Composite Simpson's rule
% sinxonx Evaluate (sin(x)/x)^2 with attention to sin(0)/0 = 1
% trapezoid Composite trapezoid rule
% trapzDat Composite trapezoid rule for arbitrarily spaced discrete data
% trapzDatTest Verify trapzDat function for different types of input
% xemx Evaluate x exp(-x), where x is a scalar or vector
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -