📄 thrdutil.c
字号:
CS_INT num_rows;
/* number of rows to get in a single fetch */
CS_INT row_count = 0;
connection =(CS_CONNECTION *)NULL;
rowsize = 0;
threadnum = 0;
/*
** Get parent connection
*/
retcode = ct_cmd_props(cmd, CS_GET, CS_PARENT_HANDLE, &connection,
CS_UNUSED, NULL);
if (retcode != CS_SUCCEED)
{
ex_error(threadnum,
"ex_fetch_data: ct_cmd_props(CS_PARENT_HANDLE) failed");
return retcode;
}
/*
** Get Connection specific data - get thread number from the
** user data stored in connection structure
*/
(void)ex_get_threadnum(NULL, connection, &threadnum);
/*
** Find out how many columns there are in this result set.
*/
retcode = ct_res_info(cmd, CS_NUMDATA, &num_cols, CS_UNUSED, NULL);
if (retcode != CS_SUCCEED)
{
ex_error(threadnum, "ex_fetch_data: ct_res_info() failed");
return retcode;
}
/*
** Make sure we have at least one column
*/
if (num_cols <= 0)
{
ex_error(threadnum,
"ex_fetch_data: ct_res_info() returned zero columns");
return CS_FAIL;
}
/*
** Our program variable, called 'coldata', is an array of
** EX_COLUMN_DATA structures. Each array element represents
** one column. Each array element will re-used for each row set.
** In coldata, we allocate an array of values and thus use
** array binding.
**
** First, allocate memory for the data element to process.
*/
coldata = (EX_COLUMN_DATA *)malloc(num_cols * sizeof (EX_COLUMN_DATA));
if (coldata == NULL)
{
ex_error(threadnum, "ex_fetch_data: malloc() failed");
return CS_MEM_ERROR;
}
datafmt = (CS_DATAFMT *)malloc(num_cols * sizeof (CS_DATAFMT));
if (datafmt == NULL)
{
ex_error(threadnum, "ex_fetch_data: malloc() failed");
free(coldata);
return CS_MEM_ERROR;
}
/*
** Loop through the columns getting a description of each one
** and binding each one to a program variable.
**
** We're going to bind each column to a character string;
** this will show how conversions from server native datatypes
** to strings can occur via bind.
**
** We're going to use the same datafmt structure for both the describe
** and the subsequent bind.
**
** If an error occurs within the for loop, a break is used to get out
** of the loop and the data that was allocated is free'd before
** returning.
*/
for (i = 0; i < num_cols; i++)
{
/*
** Get the column description. ct_describe() fills the
** datafmt parameter with a description of the column.
*/
retcode = ct_describe(cmd, (i + 1), &datafmt[i]);
if (retcode != CS_SUCCEED)
{
ex_error(threadnum,
"ex_fetch_data: ct_describe() failed");
break;
}
/*
** update the datafmt structure to indicate that we want the
** results in a null terminated character string.
**
** First, update datafmt.maxlength to contain the maximum
** possible length of the column. To do this, call
** ex_display_len() to determine the number of bytes needed
** for the character string representation, given the
** datatype described above. Add one for the null
** termination character.
*/
datafmt[i].maxlength = ex_display_dlen(&datafmt[i]) + 1;
/*
** Set datatype and format to tell bind we want things
** converted to null terminated strings
*/
datafmt[i].datatype = CS_CHAR_TYPE;
datafmt[i].format = CS_FMT_NULLTERM;
rowsize += MEM_ALIGN_SIZE(datafmt[i].maxlength);
}
if (retcode != CS_SUCCEED)
{
free(coldata);
free(datafmt);
return retcode;
}
rowsize += (MEM_ALIGN_SIZE(sizeof(CS_INT)) +
MEM_ALIGN_SIZE(sizeof(CS_SMALLINT))) * num_cols;
/*
** Find max. number of rows that we want to obtain in a single
** fetch (Why? - just to limit memory being used).
*/
num_rows = MAX_MEM_BLOCK_SIZE / rowsize;
for (i = 0; i < num_cols; i++)
{
coldata[i].value = (CS_CHAR *)NULL;
coldata[i].valuelen = (CS_INT *)NULL;
coldata[i].indicator = (CS_SMALLINT *)NULL;
/*
** Allocate memory for the column string
*/
coldata[i].value = (CS_CHAR *)malloc(
datafmt[i].maxlength * num_rows);
if (coldata[i].value == NULL)
{
ex_error(threadnum, "ex_fetch_data: malloc() failed");
retcode = CS_MEM_ERROR;
break;
}
/*
** Allocate memory for the valuelen
*/
coldata[i].valuelen = (CS_INT *)malloc(
sizeof(CS_INT) * num_rows);
if (coldata[i].valuelen == NULL)
{
ex_error(threadnum, "ex_fetch_data: malloc() failed");
retcode = CS_MEM_ERROR;
break;
}
/*
** Allocate memory for the indicator
*/
coldata[i].indicator = (CS_SMALLINT *)malloc(
sizeof(CS_SMALLINT) * num_rows);
if (coldata[i].indicator == NULL)
{
ex_error(threadnum, "ex_fetch_data: malloc() failed");
retcode = CS_MEM_ERROR;
break;
}
/*
** Now do an array bind.
*/
datafmt[i].count = num_rows;
retcode = ct_bind(cmd, (i + 1), &datafmt[i],
coldata[i].value, coldata[i].valuelen,
coldata[i].indicator);
if (retcode != CS_SUCCEED)
{
ex_error(threadnum, "ex_fetch_data: ct_bind() failed");
break;
}
}
if (retcode != CS_SUCCEED)
{
for (j = 0; j <= i; j++)
{
free(coldata[j].value);
free(coldata[j].valuelen);
free(coldata[j].indicator);
}
free(coldata);
free(datafmt);
return retcode;
}
/*
** Fetch the rows. Loop while ct_fetch() returns CS_SUCCEED or
** CS_ROW_FAIL
*/
while (((retcode = ct_fetch(cmd, CS_UNUSED, CS_UNUSED, CS_UNUSED,
&rows_read)) == CS_SUCCEED) || (retcode == CS_ROW_FAIL))
{
/*
** Increment our row count by the number of rows just fetched.
*/
row_count = row_count + rows_read;
/*
** Check if we hit a recoverable error.
*/
if (retcode == CS_ROW_FAIL)
{
EX_GLOBAL_PROTECT(fprintf(stdout,
"Thread_%d:Error on row %d.\n",
threadnum, row_count));
fflush(stdout);
}
ex_display_rows(threadnum, rows_read, num_cols, datafmt,
coldata);
}
/*
** Free allocated space.
*/
for (i = 0; i < num_cols; i++)
{
free(coldata[i].value);
free(coldata[i].valuelen);
free(coldata[i].indicator);
}
free(coldata);
free(datafmt);
/*
** We're done processing rows. Let's check the final return
** value of ct_fetch().
*/
switch ((int)retcode)
{
case CS_END_DATA:
/*
** Everything went fine.
*/
EX_GLOBAL_PROTECT(fprintf(stdout,
"Thread_%d:All done processing rows - total %d.\n",
threadnum, row_count));
fflush(stdout);
retcode = CS_SUCCEED;
break;
case CS_FAIL:
/*
** Something terrible happened.
*/
ex_error(threadnum, "ex_fetch_data: ct_fetch() failed");
return retcode;
/*NOTREACHED*/
break;
default:
/*
** We got an unexpected return value.
*/
ex_error(threadnum,
"ex_fetch_data: ct_fetch() returned an unexpected retcode");
return retcode;
/*NOTREACHED*/
break;
}
return retcode;
}
/*****************************************************************************
**
** sql based functions
**
*****************************************************************************/
/*
** ex_create_db()
**
** Type of function:
** example program utility api
**
** Purpose:
** This routine creates a database and opens it. It first checks
** that the database does not already exists. If it does exist
** the database is dropped before creating a new one.
**
** Parameters:
** connection - Pointer to CS_CONNECTION structure.
** dbname - The name to be used for the created database.
**
** Return:
** Result of functions called in CT-Lib.
**
*/
CS_RETCODE CS_PUBLIC
ex_create_db(connection, dbname)
CS_CONNECTION *connection;
char *dbname;
{
CS_RETCODE retcode;
CS_CHAR *cmdbuf;
CS_INT threadnum = 0;
/*
** Get Connection specific data - get thread number from the
** user data stored in connection structure
*/
(void)ex_get_threadnum(NULL, connection, &threadnum);
/*
** If the database already exists, drop it.
*/
if ((retcode = ex_remove_db(connection, dbname)) != CS_SUCCEED)
{
ex_error(threadnum, "ex_create_db: ex_remove_db() failed");
}
/*
** Allocate the buffer for the command string.
*/
cmdbuf = (CS_CHAR *) malloc(EX_BUFSIZE);
if (cmdbuf == (CS_CHAR *)NULL)
{
ex_error(threadnum, "ex_create_db: malloc() failed");
return CS_FAIL;
}
/*
** Set up and send the command to create the database.
*/
sprintf(cmdbuf, "create database %s", dbname);
if ((retcode = ex_execute_cmd(connection, cmdbuf)) != CS_SUCCEED)
{
ex_error(threadnum,
"ex_create_db: ex_execute_cmd(create db) failed");
}
free(cmdbuf);
return retcode;
}
/*
** ex_remove_db()
**
** Type of function:
** example program utility api
**
** Purpose:
** This routine removes a database. It first checks that
** the database exists, and if so, removes it.
**
** Parameters:
** connection - Pointer to CS_CONNECTION structure.
** dbname - The name of the database to remove.
**
** Return:
** Result of functions called in CT-Lib or CS_FAIL if a malloc failure
** occurred.
*/
CS_RETCODE
ex_remove_db(connection, dbname)
CS_CONNECTION *connection;
char *dbname;
{
CS_RETCODE retcode;
CS_CHAR *cmdbuf;
CS_INT threadnum = 0;
/*
** Get Connection specific data - get thread number from the
** user data stored in connection structure
*/
(void)ex_get_threadnum(NULL, connection, &threadnum);
/*
** Connect to the master database in order to
** remove the specified database.
*/
if ((retcode = ex_use_db(connection, "master")) != CS_SUCCEED)
{
ex_error(threadnum, "ex_remove_db: ex_use_db(master) failed");
return retcode;
}
/*
** Allocate the buffer for the command string.
*/
cmdbuf = (CS_CHAR *) malloc(EX_BUFSIZE);
if (cmdbuf == (CS_CHAR *)NULL)
{
ex_error(threadnum, "ex_remove_db: malloc() failed");
return CS_FAIL;
}
/*
** Set up and send the command to check for and drop the
** database if it exists.
*/
sprintf(cmdbuf,
"if exists (select name from sysdatabases where name = \"%s\") \
drop database %s", dbname, dbname);
if ((retcode = ex_execute_cmd(connection, cmdbuf)) != CS_SUCCEED)
{
ex_error(threadnum,
"ex_remove_db: ex_execute_cmd(drop db) failed");
}
free(cmdbuf);
return retcode;
}
/*
** ex_use_db()
**
** Type of function:
** example program utility api
**
** Purpose:
** This routine changes the current database to the named db passed in.
**
** Parameters:
** connection - Pointer to CS_CONNECTION structure.
** dbname - The name of the database to use.
**
** Return:
** Result of functions called in CT-Lib or CS_FAIL if a malloc failure
** occured.
*/
CS_RETCODE
ex_use_db(connection, dbname)
CS_CONNECTION *connection;
char *dbname;
{
CS_RETCODE retcode;
CS_CHAR *cmdbuf;
CS_INT threadnum = 0;
/*
** Get Connection specific data - get thread number from the
** user data stored in connection structure
*/
(void)ex_get_threadnum(NULL, connection, &threadnum);
/*
** Allocate the buffer for the command string.
*/
cmdbuf = (CS_CHAR *) malloc(EX_BUFSIZE);
if (cmdbuf == (CS_CHAR *)NULL)
{
ex_error(threadnum, "ex_use_db: malloc() failed");
return CS_FAIL;
}
/*
** Set up and send the command to use the database
*/
sprintf(cmdbuf, "use %s\n", dbname);
if ((retcode = ex_execute_cmd(connection, cmdbuf)) != CS_SUCCEED)
{
ex_error(threadnum, "ex_use_db: ex_execute_cmd(use db) failed");
}
free(cmdbuf);
return retcode;
}
/*
** ex_get_threadnum()
**
** Type of function:
** example program utility api
**
** Purpose:
** Retrieve thread number from connection or context level user data.
**
** NOTE that, application can store thread level data into connection or
** context user data (as in this sample) for use in callbacks. For
** other purposes, Operating System provided primitives for thread
** specific data (also known as thread local data) may also be used.
**
** Parameters:
** context - Pointer to CS_CONTEXT structure
** connection - Pointer to CS_CONNECTION structure.
** threadnum - Pointer to CS_INT - that receives the user data
**
** Return:
** Result of functions called in CT-Lib
*/
CS_RETCODE
ex_get_threadnum(context, connection, threadnum)
CS_CONTEXT *context;
CS_CONNECTION *connection;
CS_INT *threadnum;
{
CS_RETCODE retcode;
if (connection != (CS_CONNECTION *)NULL)
{
retcode = ct_con_props(connection, CS_GET, CS_USERDATA,
threadnum, CS_SIZEOF(CS_INT), (CS_INT *)NULL);
if (retcode != CS_SUCCEED)
{
ex_error(0,
"Thread_unknown:ct_con_props(CS_GET CS_USERDATA) failed\n");
}
}
else
{
retcode = cs_config(context, CS_GET, CS_USERDATA, threadnum,
CS_SIZEOF(CS_INT), (CS_INT *)NULL);
if (retcode != CS_SUCCEED)
{
ex_error(0,
"Thread_unknown:cs_config(CS_GET CS_USERDATA) failed\n");
}
}
return(retcode);
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -