📄 tcm_8psk.c
字号:
// ------------------------------------------------------------------------
// File: tcm_8psk.c
// Date: April 2, 2002.
// Description: TCM decoder, maximum likelihood decoding.
// ------------------------------------------------------------------------
// This program is complementary material for the book:
//
// R.H. Morelos-Zaragoza, The Art of Error Correcting Coding, Wiley, 2002.
//
// ISBN 0471 49581 6
//
// This and other programs are available at http://the-art-of-ecc.com
//
// You may use this program for academic and personal purposes only.
// If this program is used to perform simulations whose results are
// published in a journal or book, please refer to the book above.
//
// The use of this program in a commercial product requires explicitely
// written permission from the author. The author is not responsible or
// liable for damage or loss that may be caused by the use of this program.
//
// Copyright (c) 2002. Robert H. Morelos-Zaragoza. All rights reserved.
// ------------------------------------------------------------------------
#include <stdio.h>
#include <math.h>
#include <float.h>
#include <limits.h>
// #include "viterbi_conventional.h"
#define MAX_RANDOM LONG_MAX
// Use the compiling directive -DSHOW_PROGRESS to see how the decoder
// converges to the decoded sequence by monitoring the survivor memory
#ifdef SHOW_PROGRESS
#define DELTA 1
#endif
int k2=1, n2, m2;
int NUM_STATES, OUT_SYM, NUM_TRANS;
long TRUNC_LENGTH;
double RATE;
double INIT_SNR, FINAL_SNR, SNR_INC;
long NUMSIM;
char name1[40], name2[40];
FILE *fp; /* Pointer for trellis data file */
// unsigned int g2[n2][k2] = { /* rate-1/2 memory=6 */
// 0x4f, /* REVERSE ORDER */
// 0x6d }; /* */
unsigned int g2[10][10];
unsigned int memory2, output; /* Memory and output */
unsigned int data2; /* Data */
unsigned long seed; /* Seed for random generator */
unsigned int data_symbol[1024]; /* 1-bit data sequence */
unsigned int data_symbol2[1024]; /* 1-bit data sequence */
unsigned long indxx; /* Simulation index */
double psk_I[8], psk_Q[8];
int transmitted; /* index of transmitted signal */
double transmitted_I; /* Transmitted signals/branch */
double transmitted_Q; /* Transmitted signals/branch */
int estimate_data2;
double snr, amp;
double received_I; /* Received signals/branch */
double received_Q; /* Received signals/branch */
// Data structures used for trellis sections and survivors
struct trel {
int init; /* initial state */
int data; /* data symbol */
int final; /* final state */
int output; /* output coded symbols (branch label) */
};
struct surv {
double metric; /* metric */
int data[1024]; /* estimated data symbols */
int data2[1024]; /* estimated data symbols */
int state[1024]; /* state sequence */
};
// A trellis section is an array of branches, indexed by an initial
// state and a k_2-bit input data. The values read
// are the final state and the output symbols
struct trel trellis[1024][100];
/* A survivor is a sequence of states and estimated data, of length
equal to TRUNC_LENGTH, together with its corresponding metric.
A total of NUM_STATES survivors are needed */
struct surv survivor[1024], surv_temp[1024];
/* Function prototypes */
void encoder2(void); /* Encoder for C_{O2} */
int random_data(void); /* Random data generator */
void transmit(void); /* Encoder & BPSK modulator */
void awgn(void); /* Add AWGN */
void viterbi(void); /* Viterbi decoder */
double comp_metric(double rec_I, double rec_Q, int ref); /* Metric calc */
double comp_correl(double rec_I, double rec_Q, int ref); /* Metric calc */
void open_files(void); /* Open files for output */
void close_files(void); /* Close files */
main(int argc, char *argv[])
{
register int i, j, k;
int init, data, final, output;
register int error;
unsigned long error_count, error_coded, error_uncoded;
FILE *fp_ber; /* Pointer for overall BER data file */
double RATE;
// Command line processing
if (argc != 8)
{
printf("Usage %s file_input file_output truncation snr_init snr_final snr_
inc num_sim\n", argv[0]);
exit(0);
}
sscanf(argv[1],"%s", name1);
sscanf(argv[2],"%s", name2);
sscanf(argv[3],"%ld", &TRUNC_LENGTH);
sscanf(argv[4],"%lf", &INIT_SNR);
sscanf(argv[5],"%lf", &FINAL_SNR);
sscanf(argv[6],"%lf", &SNR_INC);
sscanf(argv[7],"%ld", &NUMSIM);
printf("\nSimulation of TCM decoding with 8-PSK modulation over an AWGN channel\n");
printf("%ld simulations per Eb/No (dB) point\n", NUMSIM);
fp_ber = fopen(name2,"w");
/* Open file with trellis data */
if (!(fp = fopen(name1,"r")))
{
printf("Error opening file!\n");
exit(1);
}
fscanf(fp, "%d %d", &n2, &m2);
RATE = (2.0 / (double) n2)*3.0; // 2 bits per symbol if encoder is rate 1/2
fscanf(fp, "%d %d %d", &NUM_STATES, &OUT_SYM, &NUM_TRANS);
for (j=0; j<n2; j++)
fscanf(fp, "%x", &g2[j][0]);
printf("\n%d-state rate-1/%d binary convolutional encoder\n",
NUM_STATES, n2);
printf("with generator polynomials ");
for (j=0; j<n2; j++) printf("%x ", g2[j][0]); printf("\n");
printf("\nDecoding depth = %ld\n\n", TRUNC_LENGTH);
/* =================== READ TRELLIS STRUCTURE ==================== */
for (j=0; j<NUM_STATES; j++) /* For each state in the section */
for (k=0; k<NUM_TRANS; k++) /* and for each outgoing branch */
{
/* Read initial state, input data and final state */
fscanf(fp,"%d %d %d", &trellis[j][k].init, &trellis[j][k].data,
&trellis[j][k].final);
/* Read the output symbols of the branch */
fscanf(fp,"%d", &data);
trellis[j][k].output = data;
} /* end for states */
/* end for branches */
fclose(fp);
#ifdef PRI
for (j=0; j<NUM_STATES; j++) /* For each state in the section */
for (k=0; k<NUM_TRANS; k++) /* and for each outgoing branch */
{
printf("%3d %3d %3d ", trellis[j][k].init,
trellis[j][k].data, trellis[j][k].final);
printf("%d", trellis[j][k].output);
printf("\n");
} /* end for states */
/* end for branches */
#endif
snr = INIT_SNR;
/* Bits-to-8PSK signal mapping as used in Japanese Satellite ISDB
|
[3] 011 #
|
[2] 010 $ | * 001 [1]
|
[4] 100 | 000 [0]
-----+---------------+-----
|
|
[5] 101 * | $ 110 [6]
|
# 111 [7]
|
*/
/* Coordinates of the 8-PSK symbols */
psk_I[0] = 1.0; psk_Q[0] = 0.0;
psk_I[1] = cos(M_PI/4.0); psk_Q[1] = sin(M_PI/4.0);
psk_I[3] = 0.0; psk_Q[3] = 1.0;
psk_I[2] = -cos(M_PI/4.0); psk_Q[2] = sin(M_PI/4.0);
psk_I[4] = -1.0; psk_Q[4] = 0.0;
psk_I[5] = -cos(M_PI/4.0); psk_Q[5] = -sin(M_PI/4.0);
psk_I[7] = 0.0; psk_Q[7] = -1.0;
psk_I[6] = cos(M_PI/4.0); psk_Q[6] = -sin(M_PI/4.0);
/***** Try this:
psk_I[0] = cos(M_PI/8.0); psk_Q[0] = sin(M_PI/8.0);
psk_I[1] = cos(3.0*M_PI/8.0); psk_Q[1] = sin(3.0*M_PI/8.0);
psk_I[3] = -cos(3.0*M_PI/8.0); psk_Q[3] = sin(3.0*M_PI/8.0);
psk_I[2] = -cos(M_PI/8.0); psk_Q[2] = sin(M_PI/8.0);
psk_I[4] = -cos(M_PI/8.0); psk_Q[4] = -sin(M_PI/8.0);
psk_I[5] = -cos(3.0*M_PI/8.0); psk_Q[5] = -sin(3.0*M_PI/8.0);
psk_I[7] = cos(3.0*M_PI/8.0); psk_Q[7] = -sin(3.0*M_PI/8.0);
psk_I[6] = cos(M_PI/8.0); psk_Q[6] = -sin(M_PI/8.0);
******/
/* ======================== SNR LOOP ============================= */
while ( snr < (FINAL_SNR+0.001) )
{
#ifdef PRINT
printf("Viterbi decoding of a rate-1/n convolutional code\n");
#endif
/* Random seed from current time */
time(&seed);
srandom(seed);
amp = sqrt(2.0*RATE*pow(10.0,(snr/10.0)));
/* Initialize transmitted data sequence */
for (i=0; i<TRUNC_LENGTH; i++)
{
data_symbol[i]=0;
data_symbol2[i]=0;
}
/* Initialize survivor sequences and metrics */
for (i=0; i<NUM_STATES; i++)
{
survivor[i].metric = 0.0; /* Metric = 0 */
for (j=0; j<TRUNC_LENGTH; j++)
{
survivor[i].data[j] = 0; /* Estimated data = 0 */
survivor[i].data2[j] = 0; /* Estimated (uncoded) data = 0 */
survivor[i].state[j] = 0; /* Estimated state = 0 */
}
}
/* Index used in simulation loop */
indxx = 0;
/* Initialize encoder memories */
memory2 = 0;
/* Error counters */
error_count = error_coded = error_uncoded = 0;
/* ===================== SIMULATION LOOP ========================= */
while (indxx < NUMSIM)
{
/* GENERATE random two-bit symbols */
i = random_data();
data_symbol[indxx % TRUNC_LENGTH] = (i & 1); /* */
data_symbol2[indxx % TRUNC_LENGTH] = ( (i>>1) & 1 ); /* */
#ifdef PRINT
printf("Transmitted data sequence:\n");
printf("%2d %x ",(indxx % TRUNC_LENGTH),
data_symbol[indxx % TRUNC_LENGTH]);
for (i=0; i<TRUNC_LENGTH; i++)
printf("%x", data_symbol[i]);
printf("\n");
#endif
/* ENCODE AND MODULATE (BPSK) data bit */
transmit();
#ifdef PRI
printf("Transmitted = ");
printf("%d ", transmitted);
printf("\n");
#endif
/* ADD ADDITIVE WHITE GAUSSIAN NOISE */
awgn(); /* */
/* VITERBI DECODE */
viterbi();
indxx += 1; /* Increase simulation index */
/* COMPUTE ERRORS */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -