📄 relearningscheme.h
字号:
/* XCSR_DE1.0
* --------------------------------------------------------
* Learning classifier system based on accuracy in dynamic environments
*
* by Huong Hai (Helen) Dam
* z3140959@itee.adfa.edu.au
* UNSW @ ADFA, Canberra Australia
* Artificial Life and Adaptive Robotics Laboratory
* http://www.itee.adfa.edu.au/~alar
*
* Last modified: 24-11-2005
*
*/
#ifndef AOC_H
#define AOC_H
#include <iostream.h>
#include <fstream.h>
#include "classifier.h"
#include "population.h"
#include "declare.h"
#include "ga.h"
class ReLearningScheme
{
private:
int rep_type;
int maxpopsize;
Random *random;
int *matchset;
int *actset;
double parray[NACTION + 1];
int naset;
int nmset;
int num_cover;
double beta;
public:
ReLearningScheme(int rand, int type, int maxpop);
void getPredictionArray(Population *pop);
int getMatchSet(Population *pop, input_t *input);
int formMatchSet(Population *pop, input_t *input);
int formActionSet(Population *pop, int action);
int returnActionSet(int *set);
int getActionWinner(Population *pop);
int getRandomAction(Population *pop);
int performanceComponent(GA *ga, Population *pop, input_t *input);
int getXCSOutput(Population *pop, input_t *input);
Classifier* covering(Population *pop,input_t *input, int action, int type);
void resetCoveringCounter(){num_cover = 0;}
int getCoveringCounter(){return num_cover;}
void adjustActionSet(Population *pop, double reward);
void updateFitness(Population *pop);
double getAvgSystemError(int action, double reward);
void setFastLearningRate(int);
void adaptLearningRate(double, double);
void reinforcementReport();
};
#endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -