📄 randomcityloopfornearbynodes.java
字号:
if ( ( slotPredecessors == null ) || ( slotStarts == null ) || ( slotStops == null ) || ( slotSuccessors == null ) ) { System.err.println ( "ERROR! RandomCityLoopForNearbyNodes.findSlots(): " + "failed to allocate some array at the end." ); } for ( int i = 0; i < howManySlots; i++ ) { slotPredecessors[i] = slotBefores[i]; slotStarts[i] = slotBeginnings[i]; slotStops[i] = slotEndings[i]; slotSuccessors[i] = slotAfters[i]; } if (DB) { System.out.println( "findSlots() mark 013" ); } int slotList[][] = null; try { int tempSlotList[][] = { slotPredecessors, slotStarts, slotStops, slotSuccessors, }; if (DB) { System.out.println( "findSlots() mark 014" ); } slotList = tempSlotList; if (DB) { System.out.println( "findSlots() mark 015" ); } } catch (Exception e) { System.err.println ( "ERROR! RandomCityLoopForNearbyNodes.findSlots(): " + "failed to fill slotList at end." ); } if (DB) { System.out.println( "findSlots() mark 016" ); } return slotList; } private boolean inList( int c, int list[] ) { while ( c < 0 ) { c += ValuatorControls.getNumberOfCities(); } for (int i = 0; i < list.length; i++) { if (c == list[i]) { return true; } } return false; } private int listIndex( int c, int list[] ) { while ( c < 0 ) { c += ValuatorControls.getNumberOfCities(); } for (int i = 0; i < list.length; i++) { if (c == list[i]) { return i; } } return -1; } private int [] pickCities ( TravellerWorld world, int permuteSize, int codonName ) { MersenneTwister mt = MersenneTwister.getTwister();/*** Pick a location in the working canvas playfield area in a gaussian** distribution centered around the the next city in sequence, from** which to reach out for the nearest permuteSize cities.*/ double someCityExactLocation[] = world.getCityExactLocation(codonName); double x = someCityExactLocation[TravellerWorld.CITY_X] + mt.nextGaussian() * gaussianScaler; double y = someCityExactLocation[TravellerWorld.CITY_Y] + mt.nextGaussian() * gaussianScaler; if (this.DB) { System.out.println("pickedCities at: " + x + "," + y ); } int cities[] = new int[permuteSize]; double distances[] = new double[permuteSize]; for ( int i = 0; i < permuteSize; i++ ) { cities[i] = -1; distances[i] = Double.MAX_VALUE; } int genomeLength = world.getNumberOfCities(); if (this.DB) { System.out.println( "pickCities, cities: " + Debugging.dump(cities) ); System.out.println( "pickCities, distances: " + Debugging.dump(distances) ); } for ( int i = 0; i < genomeLength; i++ ) { double cityExactLocation[] = world.getCityExactLocation(i); double cx = cityExactLocation[TravellerWorld.CITY_X]; double cy = cityExactLocation[TravellerWorld.CITY_Y]; double distance = Math.sqrt( ( ( cx - x ) * ( cx - x ) ) + ( ( cy - y ) * ( cy - y ) ) ); if (this.DB) { System.out.println( "pickCities OK to inner loop" ); } double dtemp; int ctemp; int itemp = i; for ( int j = 0 ; j < permuteSize; j++ ) { if ( distance < distances[j] ) { dtemp = distances[j]; ctemp = cities[j]; distances[j] = distance; cities[j] = itemp; distance = dtemp; itemp = ctemp; } } if (this.DB) { System.out.println( "pickCities, cities,i: " + Debugging.dump(cities) + i ); System.out.println( "pickCities, distances: " + Debugging.dump(distances) ); } } return cities; } private void dive(int slot[], int depth, Vector v) { try { depth++;/*** Since we pass arrays by reference, and will be modifying the array at** each deeper level of recursion but wanting it intact for further work** when we return, we must create a new copy at each level for the** effort there.*/ int recurse[] = new int[slot.length]; for (int i = 0; i < slot.length; i++) { recurse[i] = slot[i]; } if ( depth < slot.length) { while (recurse[depth - 1] != 0) { recurse[depth - 1]--; recurse[depth]++; int saveAs[] = new int[slot.length];/*** We need to make a new array copy to save into the returned vector,** we will clobber recurse when we next come up for air if we do more** work on it in this loop, and again, v is getting a reference, so it** needs to be a reference to a separate, never modified copy.*/ for (int i = 0; i < slot.length; i++) { saveAs[i] = recurse[i]; } v.add(saveAs); if ( ( depth + 1 ) < slot.length ) { dive( recurse, depth, v ); } } } } catch (Exception e) { System.err.println ( "ERROR! RandomCityLoopForNearbyNodes.dive() threw at depth" + depth ); } } private Vector createSlotCounts( int codons, int slots ) { Vector v = new Vector(); if ( v == null ) { System.err.println ( "RandomCityLoopForNearbyNodes.createSlotCounts():" + "failed to create a new Vector v" ); } int slot[] = new int[slots]; if ( slot == null ) { System.err.println ( "RandomCityLoopForNearbyNodes.createSlotCounts():" + "failed to create a new int slot[]" ); } for ( int i = 0; i < slots; i++ ) { slot[i] = 0; } slot[0] = codons; int depth = 0;/*** We can safely add slot to v, slot is never itself modified in dive()*/ v.add(slot);/*** We pass v down, and whenever a new slot fill pattern is found, it is** appended to v.*/ dive( slot, depth, v); return v; } private void updateProgressDisplay( String update ) { if ( CheckBoxControls.getState(CheckBoxControls.CBC_DEBUG_PROGRESS_COUNTERS) ) { if ( m_progressDisplay == null ) { m_progressDisplay = new SmallDisplay( m_progressDisplayName, SMALL_DISPLAY_WIDTH ); } m_progressDisplay.updateDisplay( update ); } else { if ( m_progressDisplay != null ) { m_progressDisplay.closeWindow(); m_progressDisplay = null; } } }}/*[How this algorithm works, from my original "to do" list writeup.]Consider dropping a random point on the map, computing distances to all cities,sorting, selecting the M closest, removing them from the genome while keepingtrack of the S <= M slots they leave behind, then permuting all combinations ofthe removed genomes and reinserting them in permuted order in all possiblesubsettings into the voids left behind:For example, given genome:a b c d e f g h i j k l mremove, say, d e h j as the closest to the given point (u,v), leavingS = three slots "1", "2", "3":a b c 1 f g 2 i 3 k l mPermutations: Subsets: Child genomes:d e h j () () dehj a b c f g i d e h j k l m () d ehj a b c f g d i e h j k l m () de hj a b c f g d e i h j k l m () deh j a b c f g d e h i j k l m () dehj () a b c f g d e h j i k l m d () ehj a b c d f g i e h j k l m d e hj a b c d f g e i h j k l m d eh j a b c d f g e h i j k l m d ehj () a b c d f g e h j i k l m de () hj a b c d e f g i h j k l m de h j a b c d e f g h i j k l m (original!) de hj () a b c d e f g h j i k l m deh () j a b c d e h f g i j k l m deh j () a b c d e h f g j i k l m dehj () () a b c d e h j f g i k l m and similarly for the permutations below...d e j hd h e jd h j ed j e hd j h ee d h je d j he h d je h j de j d he j h dh d e jh d j eh e d jh e j dh j d eh j e dj d e hj d h ej e d hj e h dj h d ej h e dThe number of permutations is of course M! The number of subsets of Mitems subsetted in a frozen order into S containers is more complicatedto compute, and turns out to be most easily read from Pascal's triangle: ..1 ... ... ... ..1 .12 ... ... ... ..1 .11 .78 ... ... ..1 .10 .66 364 ... ... ..1 ..9 .55 286 1365 ... ..1 ..8 .45 220 1001 4368 ... ..1 ..7 .36 165 715 3003 12376 ..1 ..6 .28 120 495 2002 8008 31824 ..1 ..5 .21 .84 330 1287 5005 19448 ..1 ..4 .15 .56 210 792 3003 11440 43758 ..1 ..3 .10 .35 126 462 1716 6435 24310..1 ..2 ..6 .20 .70 252 924 3432 12870 48620 ..1 ..3 .10 .35 126 462 1716 6435 24310 ..1 ..4 .15 .56 210 792 3003 11440 43758 ..1 ..5 .21 .84 330 1287 5005 19448 ..1 ..6 .28 120 495 2002 8008 31824 ..1 ..7 .36 165 715 3003 12376 / ..1 ..8 .45 220 1001 4368 ... / ..1 ..9 .55 286 1365 ...Example: / ..1 .10 .66 364 ... ...The sixth diagonal, used for M=5, ..1 .11 .78 ... ...has values 1, 6, 21, 56, 126, 252 ..1 .12 ... ... ...for S = 1 2 3 4 5 6 slots' ..1 ... ... ...total ways to subdivide those M items withoutregard for their identity/value into S slots.Where the M+1st diagonal contains, in order, the number of subsets of M forS = 1 , 2, 3, 4, ... slots. Obviously, remembering that these subsettingsmust be multiplied by the number of permutations of M to get the totalnumber of new genomes to be generated and for which fitnesses must becalculated, the number of cities allowed must be severely limited:Number of child genomes generated by permuting M cities and then listing eachpermutation in all possible same-ordered subsets partitioned among S <= Mslots, as illustrated above. Cities \ M 1 2 3 4 5 6 7 8 9S \ - - -- --- ----- ------ ------- --------- ----------- 1 | 1 2 6 24 120 720 5040 40320 362880S 2 | 6 24 120 720 5040 40320 362880 3628800l 3 | 60 360 2520 18060 181440 1814400 19958400o 4 | 840 6720 60480 604800 6652800 79833600t 5 | 15120 151200 1663200 19958400 259459200s 6 | 322640 3991680 51891840 726485760 7 | 8648640 121080960 1816214400 8 | 259459200 4141347200 9 | 8821612800While geometry might suggest that usually a less than maximal numberof slots will occur, the worst cases are such that a producer / consumer,rather than list passing, technology must be incorporated before an Mlarger than 4 can reasonably be allowed. Passing a vector of even 2520chromosomes all at once, for five cities that create three slots, aneasily realized situation, would likely kill the Java engine. Anyway, aproducer / consumer technology recommends itself for lots of otherreasons, particularly where croppers are concerned, and the thing beingproduced is empty population slots to be refilled.Alternately, of course, emitting the single best result would suffice.[No queuing was implemented for this heuristic, the latter suggestionprevailed by its simplicity to implement. By adding adaptive permutationlimits, the ugly worst cases are mostly avoided by getting the pointsfairly well locally organized along the tour before using large numbersof permutees, so that fewer slots are produced in the general case thanwould happen at the beginning of a purely randomly seeded problem.]*/
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -