📄 checkboxcontrols.java
字号:
m_states[CBC_HEURISTIC_OPTIMIZE_NODES_NEAR_EVERY_CITY] = m_boxes[CBC_HEURISTIC_OPTIMIZE_NODES_NEAR_EVERY_CITY].getState(); } } private static class ActionConfigPermuteASublist implements ItemListener { public void itemStateChanged(ItemEvent event) { m_states[CBC_HEURISTIC_PERMUTE_A_SUBLIST] = m_boxes[CBC_HEURISTIC_PERMUTE_A_SUBLIST].getState(); } } private static class ActionConfigPermuteCutsNearAPoint implements ItemListener { public void itemStateChanged(ItemEvent event) { m_states[CBC_HEURISTIC_PERMUTE_CUTS_NEAR_A_POINT] = m_boxes[CBC_HEURISTIC_PERMUTE_CUTS_NEAR_A_POINT].getState(); } } private static class ActionConfigPermuteCutsNearEveryCity implements ItemListener { public void itemStateChanged(ItemEvent event) { m_states[CBC_HEURISTIC_PERMUTE_CUTS_NEAR_EVERY_CITY] = m_boxes[CBC_HEURISTIC_PERMUTE_CUTS_NEAR_EVERY_CITY].getState(); } } private static class ActionConfigPermuteSingles implements ItemListener { public void itemStateChanged(ItemEvent event) { m_states[CBC_HEURISTIC_PERMUTE_SINGLES] = m_boxes[CBC_HEURISTIC_PERMUTE_SINGLES].getState(); } } private static class ActionConfigPermuteSublists implements ItemListener { public void itemStateChanged(ItemEvent event) { m_states[CBC_HEURISTIC_PERMUTE_SUBLISTS] = m_boxes[CBC_HEURISTIC_PERMUTE_SUBLISTS].getState(); } } private static class ActionConfigQuasiQuickSort implements ItemListener { public void itemStateChanged(ItemEvent event) { m_states[CBC_HEURISTIC_QUASI_QUICK_SORT] = m_boxes[CBC_HEURISTIC_QUASI_QUICK_SORT].getState(); } } private static class ActionConfigQuasiShellSortInverter implements ItemListener { public void itemStateChanged(ItemEvent event) { m_states[CBC_HEURISTIC_QUASI_SHELL_SORT_INVERTER] = m_boxes[CBC_HEURISTIC_QUASI_SHELL_SORT_INVERTER].getState(); } } private static class ActionConfigQuasiShellSortSwapper implements ItemListener { public void itemStateChanged(ItemEvent event) { m_states[CBC_HEURISTIC_QUASI_SHELL_SORT_SWAPPER] = m_boxes[CBC_HEURISTIC_QUASI_SHELL_SORT_SWAPPER].getState(); } } private static class ActionConfigRandomLoopCuts implements ItemListener { public void itemStateChanged(ItemEvent event) { m_states[CBC_HEURISTIC_RANDOM_LOOP_CUTS] = m_boxes[CBC_HEURISTIC_RANDOM_LOOP_CUTS].getState(); } } private static class ActionConfigRandomLoopNodes implements ItemListener { public void itemStateChanged(ItemEvent event) { m_states[CBC_HEURISTIC_RANDOM_LOOP_NODES] = m_boxes[CBC_HEURISTIC_RANDOM_LOOP_NODES].getState(); } } private static class ActionConfigRandomLoopNodesAndEdges implements ItemListener { public void itemStateChanged(ItemEvent event) { m_states[CBC_HEURISTIC_RANDOM_LOOP_NODES_AND_EDGES] = m_boxes[CBC_HEURISTIC_RANDOM_LOOP_NODES_AND_EDGES].getState(); } } private static class ActionConfigSmoother implements ItemListener { public void itemStateChanged(ItemEvent event) { m_states[CBC_HEURISTIC_SMOOTHER] = m_boxes[CBC_HEURISTIC_SMOOTHER].getState(); } } private static class ActionConfigSnowPlow implements ItemListener { public void itemStateChanged(ItemEvent event) { m_states[CBC_HEURISTIC_SNOW_PLOW] = m_boxes[CBC_HEURISTIC_SNOW_PLOW].getState(); } } private static class ActionConfigSnowPlowSqueezebox implements ItemListener { public void itemStateChanged(ItemEvent event) { m_states[CBC_HEURISTIC_SNOW_PLOW_SQUEEZEBOX] = m_boxes[CBC_HEURISTIC_SNOW_PLOW_SQUEEZEBOX].getState(); } } private static class ActionConfigSwap implements ItemListener { public void itemStateChanged(ItemEvent event) { m_states[CBC_HEURISTIC_SWAP] = m_boxes[CBC_HEURISTIC_SWAP].getState(); } } private static class ActionConfigAllopatricDemes implements ItemListener { public void itemStateChanged(ItemEvent event) { m_states[CBC_METAHEURISTIC_ALLOPATRIC_DEMES] = m_boxes[CBC_METAHEURISTIC_ALLOPATRIC_DEMES].getState(); } } private static class ActionConfigAnneal implements ItemListener { public void itemStateChanged(ItemEvent event) { m_states[CBC_METAHEURISTIC_ANNEALING] = m_boxes[CBC_METAHEURISTIC_ANNEALING].getState(); } } private static class ActionConfigCoevolveCroppers implements ItemListener { public void itemStateChanged(ItemEvent event) { m_states[CBC_METAHEURISTIC_COEVOLVE_CROPPERS] = m_boxes[CBC_METAHEURISTIC_COEVOLVE_CROPPERS].getState(); } } private static class ActionConfigSingleElitism implements ItemListener { public void itemStateChanged(ItemEvent event) { m_states[CBC_METAHEURISTIC_SINGLE_ELITISM] = m_boxes[CBC_METAHEURISTIC_SINGLE_ELITISM].getState(); } } private static class ActionConfigTabu implements ItemListener { public void itemStateChanged(ItemEvent event) { m_states[CBC_METAHEURISTIC_TABU_SEARCH] = m_boxes[CBC_METAHEURISTIC_TABU_SEARCH].getState(); } } private static class ActionConfigRouletteWheel implements ItemListener { public void itemStateChanged(ItemEvent event) {/*** I am a radio button, turn myself back on from the checkbox's point of** view if I was clicked while already on from the state list point of** view.*/ if (m_states[CBC_METAHEURISTIC_ROULETTE_WHEEL]) { m_boxes[CBC_METAHEURISTIC_ROULETTE_WHEEL].setState(true); }/*** Now sample my state from the checkbox (though I already "know" it, in** case that sampling has side effects I need.*/ m_states[CBC_METAHEURISTIC_ROULETTE_WHEEL] = m_boxes[CBC_METAHEURISTIC_ROULETTE_WHEEL].getState();/*** Finally, turn off all of my companion radio buttons in both checkbox** and state list views.*/ if ( m_states[CBC_METAHEURISTIC_STRONG_TOURNEY] ) { m_states[CBC_METAHEURISTIC_STRONG_TOURNEY] = false; m_boxes[CBC_METAHEURISTIC_STRONG_TOURNEY].setState(false); } if ( m_states[CBC_METAHEURISTIC_WEAK_TOURNEY] ) { m_states[CBC_METAHEURISTIC_WEAK_TOURNEY] = false; m_boxes[CBC_METAHEURISTIC_WEAK_TOURNEY].setState(false); } } } private static class ActionConfigStrongTourney implements ItemListener { public void itemStateChanged(ItemEvent event) {/*** I am a radio button, turn myself back on from the checkbox's point of** view if I was clicked while already on from the state list point of** view.*/ if (m_states[CBC_METAHEURISTIC_STRONG_TOURNEY]) { m_boxes[CBC_METAHEURISTIC_STRONG_TOURNEY].setState(true); }/*** Now sample my state from the checkbox (though I already "know" it, in** case that sampling has side effects I need.*/ m_states[CBC_METAHEURISTIC_STRONG_TOURNEY] = m_boxes[CBC_METAHEURISTIC_STRONG_TOURNEY].getState();/*** Finally, turn off all of my companion radio buttons in both checkbox** and state list views.*/ if ( m_states[CBC_METAHEURISTIC_ROULETTE_WHEEL] ) { m_states[CBC_METAHEURISTIC_ROULETTE_WHEEL] = false; m_boxes[CBC_METAHEURISTIC_ROULETTE_WHEEL].setState(false); } if ( m_states[CBC_METAHEURISTIC_WEAK_TOURNEY] ) { m_states[CBC_METAHEURISTIC_WEAK_TOURNEY] = false; m_boxes[CBC_METAHEURISTIC_WEAK_TOURNEY].setState(false); } } } private static class ActionConfigWeakTourney implements ItemListener { public void itemStateChanged(ItemEvent event) {/*** I am a radio button, turn myself back on from the checkbox's point of** view if I was clicked while already on from the state list point of** view.*/ if (m_states[CBC_METAHEURISTIC_WEAK_TOURNEY]) { m_boxes[CBC_METAHEURISTIC_WEAK_TOURNEY].setState(true); }/*** Now sample my state from the checkbox (though I already "know" it, in** case that sampling has side effects I need.*/ m_states[CBC_METAHEURISTIC_WEAK_TOURNEY] = m_boxes[CBC_METAHEURISTIC_WEAK_TOURNEY].getState();/*** Finally, turn off all of my companion radio buttons in both checkbox** and state list views.*/ if ( m_states[CBC_METAHEURISTIC_ROULETTE_WHEEL] ) { m_states[CBC_METAHEURISTIC_ROULETTE_WHEEL] = false; m_boxes[CBC_METAHEURISTIC_ROULETTE_WHEEL].setState(false); } if ( m_states[CBC_METAHEURISTIC_STRONG_TOURNEY] ) { m_states[CBC_METAHEURISTIC_STRONG_TOURNEY] = false; m_boxes[CBC_METAHEURISTIC_STRONG_TOURNEY].setState(false); } } } private static class ActionConfigDelauneyTriangulationSeeds implements ItemListener { public void itemStateChanged(ItemEvent event) { m_states[CBC_SEED_FROM_DELAUNEY_TRIANGULATION] = m_boxes[CBC_SEED_FROM_DELAUNEY_TRIANGULATION].getState();/*** If we've tried to turn off all seeds, turn random seeds on again.*/ if ( ! m_states[CBC_SEED_FROM_RANDOM_POINTS] && ! m_states[CBC_SEED_FROM_MINIMAL_SPANNING_TREE] && ! m_states[CBC_SEED_FROM_ELASTIC_NET] && ! m_states[CBC_SEED_FROM_LOCAL_OPTIMIZATION] && ! m_states[CBC_SEED_FROM_DELAUNEY_TRIANGULATION] ) { m_states[CBC_SEED_FROM_RANDOM_POINTS] = true; m_boxes[CBC_SEED_FROM_RANDOM_POINTS].setState(true); } } } private static class ActionConfigElasticNetSeeds implements ItemListener { public void itemStateChanged(ItemEvent event) { m_states[CBC_SEED_FROM_ELASTIC_NET] = m_boxes[CBC_SEED_FROM_ELASTIC_NET].getState();/*** If we've tried to turn off all seeds, turn random seeds on again.*/ if ( ! m_states[CBC_SEED_FROM_RANDOM_POINTS] && ! m_states[CBC_SEED_FROM_MINIMAL_SPANNING_TREE] && ! m_states[CBC_SEED_FROM_ELASTIC_NET] && ! m_states[CBC_SEED_FROM_LOCAL_OPTIMIZATION] && ! m_states[CBC_SEED_FROM_DELAUNEY_TRIANGULATION] ) { m_states[CBC_SEED_FROM_RANDOM_POINTS] = true; m_boxes[CBC_SEED_FROM_RANDOM_POINTS].setState(true); } } } private static class ActionConfigLocalOptimizationSeeds implements ItemListener { public void itemStateChanged(ItemEvent event) { m_states[CBC_SEED_FROM_LOCAL_OPTIMIZATION] = m_boxes[CBC_SEED_FROM_LOCAL_OPTIMIZATION].getState();/*** If we've tried to turn off all seeds, turn random seeds on again.*/ if ( ! m_states[CBC_SEED_FROM_RANDOM_POINTS] && ! m_states[CBC_SEED_FROM_MINIMAL_SPANNING_TREE] && ! m_states[CBC_SEED_FROM_ELASTIC_NET] && ! m_states[CBC_SEED_FROM_LOCAL_OPTIMIZATION] && ! m_states[CBC_SEED_FROM_DELAUNEY_TRIANGULATION] ) { m_states[CBC_SEED_FROM_RANDOM_POINTS] = true; m_boxes[CBC_SEED_FROM_RANDOM_POINTS].setState(true); } } } private static class ActionConfigMinimalSpanningTreeSeeds implements ItemListener { public void itemStateChanged(ItemEvent event) { m_states[CBC_SEED_FROM_MINIMAL_SPANNING_TREE] = m_boxes[CBC_SEED_FROM_MINIMAL_SPANNING_TREE].getState();/*** If we've tried to turn off all seeds, turn random seeds on again.*/ if ( ! m_states[CBC_SEED_FROM_RANDOM_POINTS] && ! m_states[CBC_SEED_FROM_MINIMAL_SPANNING_TREE]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -