📄 论文-基于径向基函数的集成神经网络在变压器故障诊断中的应用.mht
字号:
FzrrWuFgqpZQ6v7S/wBmRkfotn0Lr/8AhUbA6n0/OsezFPupaCJaWzW8vrZZXu/wTrce2v8A6z/x
aSnmenfWz6wZGH1S7IxA37JRXbi2enaA/wBWy8V2torqyb3VfZ202bff/N/rNlHqWfZyZn1l69X1
vouEyuqqvqTA++p1N5f7bNuR9lsvrxrPUZjH1rqrsX9Xq9/+jWnZ1H6tZTji2Y7bmWuY14djk1uG
708a4udXstx7L7PRxrm767Lf5v8Awiln5X1X6V0+nqV9FTcSGOx7asf1AAXfaaXV+jW/Z+md9or/
AOF/SfziSnIr+uPV2M6nkX41RpwiBSwEtLg69tG77W9/2e39BZ6rNldfqfov0/6b9FEfW/qf2Xoj
d2PZkdQeDdc0ENNXr/Zf6PY9lte5j6/Us3fobfU/Qf4NbZq+rbc+zBGDT9ofW2u6MdsGu76LLX7N
voP+zsZ7/wBF6npVfzijZb9WH05V+RjUCrFc/wBd1tLRPqvcy25oczdZXlZFdjfV/wC1NjPz0lJu
m9SzMnqWXjW0uFVLnAP9gbXt2ejUYtfde/Jpf9q9T0mV0f0az9PWtVUelv6dkVOzMGn023aG01mt
1gl9zX/pGstfW9+RbdW5/wDp7Lf8KrySn//Q9VWVb0NxsybsbKfj2XiwM2AQDYAf0hG297WZPqZL
PRvxrP01tfq+mtVc5ZbkN6xeMl2XXWz1BU+ivILLGOqdZ7WssuxGPx3N9Oux9HrZGX/M/wA9+lSm
zj/VmrCsttwMmzHtyWu9e0NYXusLsm1mQ72NZbayzOf/AEqvI/maP+F9WVv1cqtNNFt77sCmSMW0
Ne3R1dmNVtc30XUY7WPZ+mpuyv5r9b/0lHp9vWMbArqtbk3ZeO+/Y2wSbbPRN9Vd936CmyvfbZ+k
Y9mP9qq9Gi2yuv1Fo29UzBUyunGssyDAfc2sOqa5trMe/cz12W+1jn5LK938yz+c9RJSLG+rttWP
jY9vULrRgunDsDK2vYGt9Cnd+jfXZYzEdfjWfovTu+0WWej6vpvQh9ViLvtoynN6l63qDKLGvcKt
39D9V/639nfj+x7G5f8APfpf+BRj13IuoouxMSw12PBstc0OrFINzbbQ9ljP9Az/ANiKv0Vn6X0o
39eymCnIbg5DcQMdblONRe7aWVWUin07N251l+x/6L2fZ8j1fR/R+olMr/q3XltezMyrb6bbmX30
ObT6drq3+pS2+s0u3sbTXj4r/wDSMxq7f6R6lqhR9WC3FrwMjNsyOn45q9HGNdYGyg4T8Wq47HMs
2PwLd/p1U+ozNt/0ddiJd1nNZnVt+yWMwifSsssZDvVdkDAp9NzbD+hez9c/m/6N6X/CeiL9v57c
qX9OyfsltbDQwVD1vUNF+ddVYTd6Ps+z14jf+7l/p+rs/SJKVjfVg0YtGIM670cItOHowuYa2UU0
vPqMsZuYynIZ6dVdWL+uW/q/qelZXOv6uHHyxfh5dtM1urc4w5wbv9emuv8AwDq2WW5O/wC00X3f
pf56v00rupdWN9tLcV7WDIY2izaWzWy3DrtdZ7rdzLvtOTse1n8xi+r+eqnV8nOz8jplmCMmnGFw
vtOxzHltZtbZW2n2Xbtn84zJ/QWUbPRry7/1dJTdH1craWenl3htRZ6dTi01hlL/ALThY7mNZW70
sS5vsf6n2i2n9DkX2qt1n6p/tPBwsIZLW14dTqnG2s2GzcxtbXP9G3F2bXs9bZ/Nvs2f4NYho+tj
LuuVUvy2G21zsEWE2s1yKXVmvIsNvpY7cO3+jUW++q3J2enk436J33dcuf0qrK+1urddcy6zHOW0
ipuTtDsv7FH6R1NGz1Hvso/TfoPTx/VtuSnon/VyqzqeP1FzqvUosrteBV9I10ZGI1tLrLLPs1e7
JZcyuv8Am/Q/0ttl6qs+p9Iwc7GL6m25rQ2uyunYKgHfafRaK7WWWYrMpztmP6tVfofoX/4W62tn
t6zhXZeMMvJy7cj08nEqrAaNrsytudj0WFv6J9OPbjU0/acv0Nl/836Fd6ptyvrZ+zejOm9hfVGU
+PUfY4ua+mxzKKrvRqdUz9J69ldlfrelZ/2pSU9P0no7OlsbTj2Rjt9SaWsY1rnvs9VuRa8N9V+Q
2v8AQvf6my3+c9NaKwelWdZs65kjONox6hf6DXABjmPtZ9ldtqb6fspr/RepbZlWfp/Wrx1vJKf/
0fVVh531ksxLuo1DDfY7BxnZNQB91mwO+lW1rrGVW2bK6bamZH+Gsurpr9L1txYWd/zb9Xqf2j1P
U9N37R2ev/N+ni/aPT9P2/0X7D9o+yfpPTSU16vrg92H0/JswxOde+khlnthrjUx+PZkV43rb/0f
883F2fpP9Ggt+uuQXdXP2FrmdKIaNtxl5ddbjM+nUxrWenR6z3M9X/uP+ktTYv8AzJ+w4foep9k3
O/Z39ImYdP2P/D+pv+hs/T/bP+7OxK7/AJk/asn0Z+17H/bvs3q+p6Pq2faftO3/AAXqet6n+G9L
+Z9mxJTao+tzrLsNlmE6oZdVN7t1jAa67jZLrN5YzdS37La+vf6j6bMv0PV+w21qvb9d31dJ/aJ6
e8w+oGsPJZssq+0OvrzGVPxbWN9O9n85/oPtH2b7QrHT/wDm5+g+wetPpUeht9aPQmz9n/S/RfZ/
3N//AHU+1/4JVB/zH+wuj1vsPu2bvtfpT6T/AFPsXqezf9j9X+he/wBP+bSUz/572DPOGcAmcE9Q
Y9lpfvYKhkelWxlLnPs3+pX/ANtWbP0vpo7frh6uLXl4+DZfW666q1rLKS5vpB3p/wCG9PdbZsqf
+k/Q/pP5HqBb/wAz/Uy/tG3f6Pv9eN32f0Wej6H+G2/Z93of9qf6Qo5H/ND0Kvtv2n7J6z9v2v7V
t+0ekz1d/wBr/Wt32T1PU/7S/wBO9b9N9pSU6mL1rJu6nZiX000UNqbey71nlxZYSykOrdjV0Mu3
fz1P2uz0/Up/nPUWusiz9h7Mjdu2xi+tHqcbh9hjb7vpfT2f9fWukpSSSSSlJJJJKUkkkkp//9n/
7RMwUGhvdG9zaG9wIDMuMAA4QklNBCUAAAAAABAAAAAAAAAAAAAAAAAAAAAAOEJJTQPtAAAAAAAQ
AJYAAAABAAIAlgAAAAEAAjhCSU0EJgAAAAAADgAAAAAAAAAAAAA/gAAAOEJJTQQNAAAAAAAEAAAA
eDhCSU0EGQAAAAAABAAAAB44QklNA/MAAAAAAAkAAAAAAAAAAAEAOEJJTQQKAAAAAAABAAA4QklN
JxAAAAAAAAoAAQAAAAAAAAACOEJJTQP1AAAAAABIAC9mZgABAGxmZgAGAAAAAAABAC9mZgABAKGZ
mgAGAAAAAAABADIAAAABAFoAAAAGAAAAAAABADUAAAABAC0AAAAGAAAAAAABOEJJTQP4AAAAAABw
AAD/////////////////////////////A+gAAAAA/////////////////////////////wPoAAAA
AP////////////////////////////8D6AAAAAD/////////////////////////////A+gAADhC
SU0ECAAAAAAAEAAAAAEAAAJAAAACQAAAAAA4QklNBB4AAAAAAAQAAAAAOEJJTQQaAAAAAANBAAAA
BgAAAAAAAAAAAAAAhwAAAXwAAAAGZypoB5iYAC0ANAAzAAAAAQAAAAAAAAAAAAAAAAAAAAAAAAAB
AAAAAAAAAAAAAAF8AAAAhwAAAAAAAAAAAAAAAAAAAAABAAAAAAAAAAAAAAAAAAAAAAAAABAAAAAB
AAAAAAAAbnVsbAAAAAIAAAAGYm91bmRzT2JqYwAAAAEAAAAAAABSY3QxAAAABAAAAABUb3AgbG9u
ZwAAAAAAAAAATGVmdGxvbmcAAAAAAAAAAEJ0b21sb25nAAAAhwAAAABSZ2h0bG9uZwAAAXwAAAAG
c2xpY2VzVmxMcwAAAAFPYmpjAAAAAQAAAAAABXNsaWNlAAAAEgAAAAdzbGljZUlEbG9uZwAAAAAA
AAAHZ3JvdXBJRGxvbmcAAAAAAAAABm9yaWdpbmVudW0AAAAMRVNsaWNlT3JpZ2luAAAADWF1dG9H
ZW5lcmF0ZWQAAAAAVHlwZWVudW0AAAAKRVNsaWNlVHlwZQAAAABJbWcgAAAABmJvdW5kc09iamMA
AAABAAAAAAAAUmN0MQAAAAQAAAAAVG9wIGxvbmcAAAAAAAAAAExlZnRsb25nAAAAAAAAAABCdG9t
bG9uZwAAAIcAAAAAUmdodGxvbmcAAAF8AAAAA3VybFRFWFQAAAABAAAAAAAAbnVsbFRFWFQAAAAB
AAAAAAAATXNnZVRFWFQAAAABAAAAAAAGYWx0VGFnVEVYVAAAAAEAAAAAAA5jZWxsVGV4dElzSFRN
TGJvb2wBAAAACGNlbGxUZXh0VEVYVAAAAAEAAAAAAAlob3J6QWxpZ25lbnVtAAAAD0VTbGljZUhv
cnpBbGlnbgAAAAdkZWZhdWx0AAAACXZlcnRBbGlnbmVudW0AAAAPRVNsaWNlVmVydEFsaWduAAAA
B2RlZmF1bHQAAAALYmdDb2xvclR5cGVlbnVtAAAAEUVTbGljZUJHQ29sb3JUeXBlAAAAAE5vbmUA
AAAJdG9wT3V0c2V0bG9uZwAAAAAAAAAKbGVmdE91dHNldGxvbmcAAAAAAAAADGJvdHRvbU91dHNl
dGxvbmcAAAAAAAAAC3JpZ2h0T3V0c2V0bG9uZwAAAAAAOEJJTQQRAAAAAAABAQA4QklNBBQAAAAA
AAQAAAABOEJJTQQMAAAAAA2JAAAAAQAAAIAAAAAtAAABgAAAQ4AAAA1tABgAAf/Y/+AAEEpGSUYA
AQIBAEgASAAA/+0ADEFkb2JlX0NNAAL/7gAOQWRvYmUAZIAAAAAB/9sAhAAMCAgICQgMCQkMEQsK
CxEVDwwMDxUYExMVExMYEQwMDAwMDBEMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMAQ0LCw0O
DRAODhAUDg4OFBQODg4OFBEMDAwMDBERDAwMDAwMEQwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwM
DAz/wAARCAAtAIADASIAAhEBAxEB/90ABAAI/8QBPwAAAQUBAQEBAQEAAAAAAAAAAwABAgQFBgcI
CQoLAQABBQEBAQEBAQAAAAAAAAABAAIDBAUGBwgJCgsQAAEEAQMCBAIFBwYIBQMMMwEAAhEDBCES
MQVBUWETInGBMgYUkaGxQiMkFVLBYjM0coLRQwclklPw4fFjczUWorKDJkSTVGRFwqN0NhfSVeJl
8rOEw9N14/NGJ5SkhbSVxNTk9KW1xdXl9VZmdoaWprbG1ub2N0dXZ3eHl6e3x9fn9xEAAgIBAgQE
AwQFBgcHBgU1AQACEQMhMRIEQVFhcSITBTKBkRShsUIjwVLR8DMkYuFygpJDUxVjczTxJQYWorKD
ByY1wtJEk1SjF2RFVTZ0ZeLys4TD03Xj80aUpIW0lcTU5PSltcXV5fVWZnaGlqa2xtbm9ic3R1dn
d4eXp7fH/9oADAMBAAIRAxEAPwD1VJJVH9TxGZLcWXvtLtjgxjnBpIaQbXMaWsZ+kZ+k/wDM0lOd
9ZesZvTvSqwvS9XIqyCDYHHY+uv1KLnbPa2htn8/vaqeb1/rOP1HqtO2ttGFjOupBqO4ex32Wyy5
17aXfaslttTGf8B+Z+sfZ9qnL6Z1X1cdrRe1kGxttTg32W3UN/nmBr/TycK//wA/f4SpVRb9Xsm1
9hxW2P8AUNPquxnO3m8elY6q30v01FzafTuvY70dlP6T9HsSU8/1j62dZwOlDIZbUMg5OVS519ba
2AY9b9rWNZkX+5zmetVus35Vv6Cv9FdXYrd31r6tV14dPZiNvpNT/THuZa+0Yo6hWzbttaz+b9H0
7Nlv6x/3V/WdS5n1Z/ZVOS/Dptwsjbbj0jG3ue61ntNWH6XrPufjfTZ6Preh/OfQRW3dDt6mx/oN
d1Brgxl5x3bw59L727cp1Xs3YjbP8J/3X/nP0aSnAu+tXX/2Y21uOyjIsyTSx1jXQWzl+vXXXDXe
rgtx62epd6NXq/0j0K1Gn649Vd9Yen9NsFQozcfHtL21PO51lVl9gq3202Yzr7dtVVeS230P5y1b
+fldArsb03MobY214bs+zutpFuQ7bsteyqyiu7Idc6yz1fzLPWt9j0Wu3ozMbH6pXSxleR6DaLhS
Wv8A02zFxPb6frV/zzKvf/NV/wAhJTzeT9avrFg9JyreoU49GdjWMpcwagOfRZmC3c2y1vpX3elh
Ue39F+kvyP0f8xu9O6vk5f7NltbmZmK/IveN7SHV+kyzZXaxmxjbb2t/S/pP5H6JEuzOiW4LOrvq
F9WVW1tTvRc661rhYKqWUOr+0v8AZkZH6LZ9C6//AIVGwOp9PzrHsxT7qWgiWls1vL62WV7v8E63
Htr/AOs/8Wkp5np31s+sGRh9UuyMQN+yUV24tnp2gP8AVsvFdraK6sm91X2dtNm33/zf6zZR6ln2
cmZ9ZevV9b6LhMrqqr6kwPvqdTeX+2zbkfZbL68az1GYx9a6q7F/V6vf/o1p2dR+rWU44tmO25lr
mNeHY5Nbhu9PGuLnV7Lcey+z0ca5u+uy3+b/AMIpZ+V9V+ldPp6lfRU3Ehjse2rH9QAF32ml1fo1
v2fpnfaK/wDhf0n84kpyK/rj1djOp5F+NUacIgUsBLS4OvbRu+1vf9nt/QWeqzZXX6n6L9P+m/RR
H1v6n9l6I3dj2ZHUHg3XNBDTV6/2X+j2PZbXuY+v1LN36G31P0H+DW2avq23PswRg0/aH1trujHb
Bru+iy1+zb6D/s7Ge/8ARep6VX84o2W/Vh9OVfkY1AqxXP8AXdbS0T6r3MtuaHM3WV5WRXY31f8A
tTYz89JSbpvUszJ6ll41tLhVS5wD/YG17dno1GLX3XvyaX/avU9JldH9Gs/T1rVVHpb+nZFTszBp
9Nt2htNZrdYJfc1/6RrLX1vfkW3Vuf8A6ey3/Cq8kp//0PVVlW9DcbMm7Gyn49l4sDNgEA2AH9IR
tve1mT6mSz0b8az9NbX6vprVXOWW5DesXjJdl11s9QVPoryCyxjqnWe1rLLsRj8dzfTrsfR62Rl/
zP8APfpUps4/1ZqwrLbcDJsx7clrvXtDWF7rC7JtZkO9jWW2sszn/wBKryP5mj/hfVlb9XKrTTRb
e+7ApkjFtDXt0dXZjVbXN9F1GO1j2fpqbsr+a/W/9JR6fb1jGwK6rW5N2Xjvv2NsEm2z0TfVXfd+
gpsr322fpGPZj/aqvRotsrr9RaNvVMwVMrpxrLMgwH3NrDqmubazHv3M9dlvtY5+Syvd/Ms/nPUS
Uixvq7bVj42Pb1C60YLpw7Aytr2BrfQp3fo312WMxHX41n6L07vtFlno+r6b0IfVYi77aMpzepet
6gyixr3Crd/Q/Vf+t/Z34/sexuX/AD36X/gUY9dyLqKLsTEsNdjwbLXNDqxSDc220PZYz/QM/wDY
ir9FZ+l9KN/XspgpyG4OQ3EDHW5TjUXu2llVlIp9OzdudZfsf+i9n2fI9X0f0fqJTK/6t15bXszM
q2+m25l99Dm0+na6t/qUtvrNLt7G014+K/8A0jMau3+kepaoUfVgtxa8DIzbMjp+OavRxjXWBsoO
E/FquOxzLNj8C3f6dVPqMzbf9HXYiXdZzWZ1bfsljMIn0rLLGQ71XZAwKfTc2w/oXs/XP5v+jel/
wnoi/b+e3Kl/Tsn7JbWw0MFQ9b1DRfnXVWE3ej7Ps9eI3/u5f6fq7P0iSlY31YNGLRiDOu9HCLTh
6MLmGtlFNLz6jLGbmMpyGenVXVi/rlv6v6npWVzr+rhx8sX4eXbTNbq3OMOcG7/Xprr/AMA6tllu
Tv8AtNF936X+er9NK7qXVjfbS3Fe1gyGNos2ls1stw67XWe63cy77Tk7HtZ/MYvq/nqp1fJzs/I6
ZZgjJpxhcL7Tscx5bWbW2Vtp9l27Z/OMyf0FlGz0a8u/9XSU3R9XK2lnp5d4bUWenU4tNYZS/wC0
4WO5jWVu9LEub7H+p9otp/Q5F9qrdZ+qf7TwcLCGS1teHU6pxtrNhs3MbW1z/Rtxdm17PW2fzb7N
n+DWIaPrYy7rlVL8thttc7BFhNrNcil1ZryLDb6WO3Dt/o1Fvvqtydnp5ON+id93XLn9Kqyvtbq3
XXMusxzltIqbk7Q7L+xR+kdTRs9R77KP036D08f1bbkp6J/1cqs6nj9Rc6r1KLK7XgVfSNdGRiNb
S6yyz7NXuyWXMrr/AJv0P9LbZeqrPqfSMHOxi+ptua0Nrsrp2CoB32n0Wiu1llmKzKc7Zj+rVX6H
6F/+FutrZ7es4V2XjDLycu3I9PJxKqwGja7MrbnY9Fhb+ifTj241NP2nL9DZf/N+hXeqbcr62fs3
ozpvYX1RlPj1H2OLmvpscyiq70anVM/SevZXZX63pWf9qUlPT9J6OzpbG049kY7fUmlrGNa577PV
bkWvDfVfkNr/AEL3+pst/nPTWisHpVnWbOuZIzjaMeoX+g1wAY5j7WfZXbam+n7Ka/0XqW2ZVn6f
1q8dbySn/9H1VYed9ZLMS7qNQw32OwcZ2TUAfdZsDvpVta6xlVtmyum2pmR/hrLq6a/S9bcWFnf8
2/V6n9o9T1PTd+0dnr/zfp4v2j0/T9v9F+w/aPsn6T00lNer64Pdh9PybMMTnXvpIZZ7Ya41Mfj2
ZFeN62/9H/PNxdn6T/RoLfrrkF3Vz9ha5nSiGjbcZeXXW4zPp1Ma1np0es9zPV/7j/pLU2L/AMyf
sOH6HqfZNzv2d/SJmHT9j/w/qb/obP0/2z/uzsSu/wCZP2rJ9Gftex/277N6vqej6tn2n7Tt/wAF
6nrep/hvS/mfZsSU2qPrc6y7DZZhOqGXVTe7dYwGuu42S6zeWM3Ut+y2vr3+o+mzL9D1fsNtar2/
Xd9XSf2ienvMPqBrDyWbLKvtDr68xlT8W1jfTvZ/Of6D7R9m+0Kx0/8A5ufoPsHrT6VHobfWj0Js
/Z/0v0X2f9zf/wB1Ptf+CVQf8x/sLo9b7D7tm77X6U+k/wBT7F6ns3/Y/V/oXv8AT/m0lM/+e9gz
zhnAJnBPUGPZaX72CoZHpVsZS5z7N/qV/wDbVmz9L6aO364eri15ePg2X1uuuqtayykub6Qd6f8A
hvT3W2bKn/pP0P6T+R6gW/8AM/1Mv7Rt3+j7/Xjd9n9Fno+h/htv2fd6H/an+kKOR/zQ9Cr7b9p+
yes/b9r+1bftHpM9Xf8Aa/1rd9k9T1P+0v8ATvW/TfaUlOpi9aybup2Yl9NNFDam3su9Z5cWWEsp
Dq3Y1dDLt389T9rs9P1Kf5z1FrrIs/YezI3btsYvrR6nG4fYY2+76X09n/X1rpKUkkkkpSSSSSlJ
JJJKf//ZADhCSU0EIQAAAAAAVQAAAAEBAAAADwBBAGQAbwBiAGUAIABQAGgAbwB0AG8AcwBoAG8A
cAAAABMAQQBkAG8AYgBlACAAUABoAG8AdABvAHMAaABvAHAAIAA3AC4AMAAAAAEAOEJJTQQGAAAA
AAAH//8AAAABAQD/4RJIaHR0cDovL25zLmFkb2JlLmNvbS94YXAvMS4wLwA8P3hwYWNrZXQgYmVn
aW49J++7vycgaWQ9J1c1TTBNcENlaGlIenJlU3pOVGN6a2M5ZCc/Pgo8P2Fkb2JlLXhhcC1maWx0
ZXJzIGVzYz0iQ1IiPz4KPHg6eGFwbWV0YSB4bWxuczp4PSdhZG9iZTpuczptZXRhLycgeDp4YXB0
az0nWE1QIHRvb2xraXQgMi44LjItMzMsIGZyYW1ld29yayAxLjUnPgo8cmRmOlJERiB4bWxuczpy
ZGY9J2h0dHA6Ly93d3cudzMub3JnLzE5OTkvMDIvMjItcmRmLXN5bnRheC1ucyMnIHhtbG5zOmlY
PSdodHRwOi8vbnMuYWRvYmUuY29tL2lYLzEuMC8nPgoKIDxyZGY6RGVzY3JpcHRpb24gYWJvdXQ9
J3V1aWQ6NmNkNmU1YzEtNTQ2YS0xMWQ3LWI4M2YtODlkNzc2YTA4ZDg2JwogIHhtbG5zOnhhcE1N
PSdodHRwOi8vbnMuYWRvYmUuY29tL3hhcC8xLjAvbW0vJz4KICA8eGFwTU06RG9jdW1lbnRJRD5h
ZG9iZTpkb2NpZDpwaG90b3Nob3A6YWJjY2M4ODktNTQ2OC0xMWQ3LWI4M2YtODlkNzc2YTA4ZDg2
PC94YXBNTTpEb2N1bWVudElEPgogPC9yZGY6RGVzY3JpcHRpb24+Cgo8L3JkZjpSREY+CjwveDp4
YXBtZXRhPgogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg
ICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAK
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg
ICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg
ICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg
ICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg
ICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg
IAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg
ICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg
ICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAg
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -