📄 4.m
字号:
S1=10;
[alphabet,targets]=prprob;
[R,Q]=size(alphabet);% alphabet在prprob函数中有定义
[S2,Q]=size(targets); % targets在prprob函数中有定义
P=alphabet;
net=newff(minmax(P),[S1 S2],{'logsig' 'logsig'},'traingdx');
net.LW{2,1}=net.LW{2,1}*0.01;
net.b{2}=net.b{2}*0.01;
netn=net;
netn.trainParam.goal=0.6;
netn.trainParam.epochs=300;
T=[targets targets targets targets];
for pass=1:10
P=[alphabet, alphabet, ...
(alphabet+randn(R,Q)*0.1), ...
(alphabet+randn(R,Q)*0.2)];
[netn,tr]=train(netn,P,T);
end
noise_range=0:0.05:0.5;
max_test=100;
T=targets;
for i=1:11
noiselevel(i)=noise_range(i);
errors1(i)=0;
errors2(i)=0;
for j=1:max_test
P=alphabet+randn(35,26)*noiselevel(i); % 测试未经误差训练的网络
A=sim(net,P);
AA=compet(A);
errors1(i)=errors1(i)+sum(sum(abs(AA-T)))/2; % 测试经过误差训练的网络
An=sim(netn,P);
AAn=compet(An);
errors2(i)=errors2(i)+sum(sum(abs(AAn-T)))/2;
end
end
pause
figure
plot(noise_range,errors1*100,'--',noise_range,errors2*100);
title('识别错误率');
xlabel('噪声指标');
ylabel('未经误差训练的网络 - - 经过误差训练的网络---');
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -