⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 mvaar.html

📁 时间序列分析的工具箱,里面有html说明
💻 HTML
字号:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"                "http://www.w3.org/TR/REC-html40/loose.dtd"><html><head>  <title>Description of mvaar</title>  <meta name="keywords" content="mvaar">  <meta name="description" content="Multivariate (Vector) adaptive AR estimation base on a multidimensional">  <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">  <meta name="generator" content="m2html &copy; 2003 Guillaume Flandin">  <meta name="robots" content="index, follow">  <link type="text/css" rel="stylesheet" href="../m2html.css"></head><body><a name="_top"></a><div><a href="../index.html">Home</a> &gt;  <a href="index.html">tsa</a> &gt; mvaar.m</div><!--<table width="100%"><tr><td align="left"><a href="../index.html"><img alt="<" border="0" src="../left.png">&nbsp;Master index</a></td><td align="right"><a href="index.html">Index for tsa&nbsp;<img alt=">" border="0" src="../right.png"></a></td></tr></table>--><h1>mvaar</h1><h2><a name="_name"></a>PURPOSE <a href="#_top"><img alt="^" border="0" src="../up.png"></a></h2><div class="box"><strong>Multivariate (Vector) adaptive AR estimation base on a multidimensional</strong></div><h2><a name="_synopsis"></a>SYNOPSIS <a href="#_top"><img alt="^" border="0" src="../up.png"></a></h2><div class="box"><strong>function [x,e,Kalman,Q2] = mvaar(y,p,UC,mode,Kalman) </strong></div><h2><a name="_description"></a>DESCRIPTION <a href="#_top"><img alt="^" border="0" src="../up.png"></a></h2><div class="fragment"><pre class="comment"> Multivariate (Vector) adaptive AR estimation base on a multidimensional
 Kalman filer algorithm. A standard VAR model (A0=I) is implemented. The 
 state vector is defined as X=(A1|A2...|Ap) and x=vec(X')

 [x,e,Kalman,Q2] = mvaar(y,p,UC,mode,Kalman)

 The standard MVAR model is defined as:

        y(n)-A1(n)*y(n-1)-...-Ap(n)*y(n-p)=e(n)

    The dimension of y(n) equals s 
    
    Input Parameters:

         y            Observed data or signal 
         p            prescribed maximum model order (default 1)
        UC            update coefficient    (default 0.001)
        mode         update method of the process noise covariance matrix 0...4 ^
                    correspond to S0...S4 (default 0)

    Output Parameters

        e            prediction error of dimension s
        x            state vector of dimension s*s*p
        Q2            measurement noise covariance matrix of dimension s x s</pre></div><!-- crossreference --><h2><a name="_cross"></a>CROSS-REFERENCE INFORMATION <a href="#_top"><img alt="^" border="0" src="../up.png"></a></h2>This function calls:<ul style="list-style-image:url(../matlabicon.gif)"></ul>This function is called by:<ul style="list-style-image:url(../matlabicon.gif)"></ul><!-- crossreference --><hr><address>Generated on Tue 17-Aug-2004 00:13:21 by <strong><a href="http://www.artefact.tk/software/matlab/m2html/">m2html</a></strong> &copy; 2003</address></body></html>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -