📄 acovf.m
字号:
function [ACF,NN] = acovf(Z,KMAX,Mode,Mode2);
% ACOVF estimates autocovariance function (not normalized)
% NaN's are interpreted as missing values. %% [ACF,NN] = acovf(Z,MAXLAG,Mode);
%
% Input:% Z Signal (one channel per row);
% MAXLAG maximum lag% Mode 'biased' : normalizes with N% 'unbiased': normalizes with N-lag% 'coeff' : normalizes such that lag 0 is 1 % others : no normalization%
% Output:% ACF autocovariance function
% NN number of valid elements %%
% REFERENCES:
% A.V. Oppenheim and R.W. Schafer, Digital Signal Processing, Prentice-Hall, 1975.
% S. Haykin "Adaptive Filter Theory" 3ed. Prentice Hall, 1996.
% M.B. Priestley "Spectral Analysis and Time Series" Academic Press, 1981.
% W.S. Wei "Time Series Analysis" Addison Wesley, 1990.
% J.S. Bendat and A.G.Persol "Random Data: Analysis and Measurement procedures", Wiley, 1986.
% $Revision: 1.8 $% $Id: acovf.m,v 1.8 2003/11/08 14:48:03 schloegl Exp $% Copyright (c) 1998-2003 by Alois Schloegl <a.schloegl@ieee.org>
% This library is free software; you can redistribute it and/or
% modify it under the terms of the GNU Library General Public
% License as published by the Free Software Foundation; either
% version 2 of the License, or (at your option) any later version.
%
% This library is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
% Library General Public License for more details.
%
% You should have received a copy of the GNU Library General Public
% License along with this library; if not, write to the
% Free Software Foundation, Inc., 59 Temple Place - Suite 330,
% Boston, MA 02111-1307, USA.
if nargin<3, Mode='biased'; end;
[lr,lc] = size(Z);
MISSES = sum(isnan(Z)')';
if any(MISSES); % missing values
M = real(~isnan(Z)); Z(isnan(Z))=0;
end;
if (nargin == 1) KMAX = lc-1;
elseif (KMAX >= lc-1) KMAX = lc-1;
end;
ACF = zeros(lr,KMAX+1);
if nargin>3, % for testing, use arg4 for comparing the methods,
elseif (KMAX*KMAX > lc*log2(lc)) % & isempty(MISSES); Mode2 = 1;
elseif (10*KMAX > lc); Mode2 = 3;
else Mode2 = 4;
end;
%%%%% ESTIMATION of non-normalized ACF %%%%%% the following algorithms gve equivalent results, however, the computational effort is different,
% depending on lr,lc and KMAX, a different algorithm is most efficient.
if Mode2==1; % KMAX*KMAX > lc*log(lc); % O(n.logn)+O(K
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -