📄 ar_spa.m
字号:
function [w,A,B,R,P,F,ip] = ar_spa(ARP,nhz,E);% AR_SPA decomposes an AR-spectrum into its compontents % [w,A,B,R,P,F,ip] = ar_spa(AR,fs,E);%% INPUT:% AR autoregressive parameters% fs sampling rate, provide w and B in [Hz], if not given the result is in radians % E noise level (mean square), gives A and F in units of E, if not given as relative amplitude%% OUTPUT% w center frequency% A Amplitude% B bandwidth% - less important output parameters - % R residual% P poles% ip number of complex conjugate poles% real(F) power, absolute values are obtained by multiplying with noise variance E(p+1) % imag(F) assymetry, - " -%% All input and output parameters are organized in rows, one row % corresponds to the parameters of one channel%% see also ACOVF ACORF DURLEV IDURLEV PARCOR YUWA % % REFERENCES:% [1] Zetterberg L.H. (1969) Estimation of parameter for linear difference equation with application to EEG analysis. Math. Biosci., 5, 227-275. % [2] Isaksson A. and Wennberg, A. (1975) Visual evaluation and computer analysis of the EEG - A comparison. Electroenceph. clin. Neurophysiol., 38: 79-86.% [3] G. Florian and G. Pfurtscheller (1994) Autoregressive model based spectral analysis with application to EEG. IIG - Report Series, University of Technolgy Graz, Austria.% $Revision: 1.9 $% $Id: ar_spa.m,v 1.9 2004/02/23 15:29:16 schloegl Exp $% Copyright (c) 1996-2003 by Alois Schloegl% e-mail: a.schloegl@ieee.org % This library is free software; you can redistribute it and/or% modify it under the terms of the GNU Library General Public% License as published by the Free Software Foundation; either% Version 2 of the License, or (at your option) any later version.%% This library is distributed in the hope that it will be useful,% but WITHOUT ANY WARRANTY; without even the implied warranty of% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU% Library General Public License for more details.%% You should have received a copy of the GNU Library General Public% License along with this library; if not, write to the% Free Software Foundation, Inc., 59 Temple Place - Suite 330,% Boston, MA 02111-1307, USA.[NTR,pp]=size(ARP);R=zeros(size(ARP));P=zeros(size(ARP));w=zeros(size(ARP));A=zeros(size(ARP));B=zeros(size(ARP));F=zeros(size(ARP));for k = 1:NTR, %if ~mod(k,100),k, end; [r,p,tmp] = residue(1,[1 -ARP(k,:)]); [tmp,idx] = sort(-abs(r)); R(k,:) = r(idx)'; % Residual, P(k,:) = p(idx)'; % Poles %r(k,:)=roots([1 -ARP(k,:)])'; w(k,:) = angle(p(idx)'); % center frequency (in [radians]) A(k,:) = 1./abs(polyval([1 -ARP(k,:)],exp(i*w(k,:)))); % Amplitude %A(k,:) = freqz(1,[1 -ARP(k,:)],w(k,:)); % Amplitude %A2(k,:) = abs(r)'./abs(exp(i*w(k,:))-r'); % Amplitude B(k,:) = -log(abs(p(idx)')); % Bandwidth if nargout < 6, elseif 0, F(k,:) = (1+sign(imag(r(idx)')))./(polyval([-ARP(k,pp-1:-1:1).*(1:pp-1) pp],1./p(idx).').*polyval([-ARP(k,pp:-1:1) 1],p(idx).')); elseif 1; a3 = polyval([-ARP(k,pp-1:-1:1).*(1:pp-1), pp],1./p(idx).'); a = polyval([-ARP(k,pp:-1:1) 1],p(idx).'); F(k,:) = (1+(imag(P(k,:))~=0))./(a.*a3); end; end;A = A.*sqrt(E(:,ones(1,pp)));if nargin>1, if size(nhz,1)==1, nhz = nhz(ones(NTR,1),:); end; w = w.*nhz(:,ones(1,pp))/(2*pi); B = B.*nhz(:,ones(1,pp))/(2*pi);end;if nargin>2, F = F.*E(:,ones(1,pp));end;ip = sum(imag(P)~=0,2)/2; return;np(:,1) = sum(imag(P')==0)'; % number of real polesnp(:,2) = pp-np(:,1); % number of imaginary poles
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -