📄 y2res.m
字号:
function [R]=y2res(Y)
% Y2RES evaluates basic statistics of a data series (column)
% res=y2res(y)
%
% OUTPUT:
% res.N sum (number of samples)
% res.MU mean
% res.SD2 variance
% res.Max Maximum
% res.Min Minimum
% ... and many more
%
% REFERENCES:
% [1] http://www.itl.nist.gov/
% [2] http://mathworld.wolfram.com/
% $Id$
% Copyright (C) 1996-2002 by Alois Schloegl <a.schloegl@ieee.org>
% This is part of the TSA-toolbox http://www.dpmi.tugraz.at/~schloegl/matlab/tsa/
% This program is free software; you can redistribute it and/or
% modify it under the terms of the GNU General Public License
% as published by the Free Software Foundation; either version 2
% of the License, or (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
[R.SUM, R.N, R.SSQ] = sumskipnan(Y,1);
%R.S3P = sumskipnan(Y.^3,1);
R.S4P = sumskipnan(Y.^4,1);
%R.S5P = sumskipnan(Y.^5,1);
R.MEAN = R.SUM./R.N;
R.MSQ = R.SSQ./R.N;
R.RMS = sqrt(R.MSQ);
R.SSQ0 = R.SSQ-R.SUM.*R.MEAN; % sum square of mean removed
if 1,%flag_implicit_unbiased_estim,
n1 = max(R.N-1,0); % in case of n=0 and n=1, the (biased) variance, STD and STE are INF
else
n1 = R.N;
end;
R.VAR = R.SSQ0./n1; % variance (unbiased)
R.STD = sqrt(R.VAR); % standard deviation
R.SEM = sqrt(R.SSQ0./(R.N.*n1)); % standard error of the mean
R.SEV = sqrt(n1.*(n1.*R.S4P./R.N+(R.N.^2-2*R.N+3).*(R.SSQ./R.N).^2)./(R.N.^3)); % standard error of the variance
R.Coefficient_of_variation = R.STD./R.MEAN;
R.CM2 = R.SSQ0./n1;
R.Max = max(Y,[],1);
R.Min = min(Y,[],1);
%R.NormEntropy = log2(sqrt(2*pi*exp(1)))+log2(R.STD);
Q0500=repmat(nan,1,size(Y,2));
Q0250=Q0500;
Q0750=Q0500;
%MODE=Q0500;
for k = 1:size(Y,2),
tmp = sort(Y(:,k));
Q0250(k) = flix(tmp,R.N(k)/4 + 0.75);
Q0500(k) = flix(tmp,R.N(k)/2 + 0.50);
Q0750(k) = flix(tmp,R.N(k)*3/4 + 0.25);
tmp = diff(tmp);
R.QUANT(k) = min(tmp(find(tmp)));
end;
R.MEDIAN = Q0500;
R.Quartiles = [Q0250; Q0750];
% R.IQR = H_spread = [Q0750 - Q0250];
R.TRIMEAN = [Q0250 + 2*Q0500 + Q0750]/4;
Y = Y - repmat(R.MEAN,size(Y)./size(R.MEAN));
R.CM3 = sumskipnan(Y.^3,1)./n1;
R.CM4 = sumskipnan(Y.^4,1)./n1;
%R.CM5 = sumskipnan(Y.^5,1)./n1;
R.SKEWNESS = R.CM3./(R.STD.^3);
R.KURTOSIS = R.CM4./(R.VAR.^2)-3;
%R.Skewness.Fisher = (R.CM3)./(R.STD.^3); %%% same as R.SKEWNESS
%R.Skewness.Pearson_Mode = (R.MEAN-R.MODE)./R.STD;
%R.Skewness.Pearson_coeff1 = (3*R.MEAN-R.MODE)./R.STD;
R.Skewness.Pearson_coeff2 = (3*R.MEAN-R.MEDIAN)./R.STD;
R.Skewness.Bowley = (Q0750+Q0250 - 2*Q0500)./(Q0750-Q0250); % quartile skewness coefficient
R.datatype = 'STAT Level 4';
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -