⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 lattice.html

📁 时间序列分析的工具箱,里面有html说明
💻 HTML
字号:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"                "http://www.w3.org/TR/REC-html40/loose.dtd"><html><head>  <title>Description of lattice</title>  <meta name="keywords" content="lattice">  <meta name="description" content="Estimates AR(p) model parameter with lattice algorithm (Burg 1968)">  <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">  <meta name="generator" content="m2html &copy; 2003 Guillaume Flandin">  <meta name="robots" content="index, follow">  <link type="text/css" rel="stylesheet" href="../m2html.css"></head><body><a name="_top"></a><div><a href="../index.html">Home</a> &gt;  <a href="index.html">tsa</a> &gt; lattice.m</div><!--<table width="100%"><tr><td align="left"><a href="../index.html"><img alt="<" border="0" src="../left.png">&nbsp;Master index</a></td><td align="right"><a href="index.html">Index for tsa&nbsp;<img alt=">" border="0" src="../right.png"></a></td></tr></table>--><h1>lattice</h1><h2><a name="_name"></a>PURPOSE <a href="#_top"><img alt="^" border="0" src="../up.png"></a></h2><div class="box"><strong>Estimates AR(p) model parameter with lattice algorithm (Burg 1968)</strong></div><h2><a name="_synopsis"></a>SYNOPSIS <a href="#_top"><img alt="^" border="0" src="../up.png"></a></h2><div class="box"><strong>function [MX,PE,arg3] = lattice(Y,lc,Mode); </strong></div><h2><a name="_description"></a>DESCRIPTION <a href="#_top"><img alt="^" border="0" src="../up.png"></a></h2><div class="fragment"><pre class="comment"> Estimates AR(p) model parameter with lattice algorithm (Burg 1968)  for multiple channels.  If you have the NaN-tools, LATTICE.M can handle missing values (NaN),  [...] = lattice(y [,Pmax [,Mode]]); [AR,RC,PE] = lattice(...); [MX,PE] = lattice(...);  INPUT: y    signal (one per row), can contain missing values (encoded as NaN) Pmax    max. model order (default size(y,2)-1)) Mode  'BURG' (default) Burg algorithm    'GEOL' geometric lattice  OUTPUT AR    autoregressive model parameter     RC    reflection coefficients (= -PARCOR coefficients) PE    remaining error variance MX    transformation matrix between ARP and RC (Attention: needs O(p^2) memory)        AR(:,K) = MX(:, K*(K-1)/2+(1:K)); = MX(:,sum(1:K-1)+(1:K));         RC(:,K) = MX(:,cumsum(1:K));      = MX(:,(1:K).*(2:K+1)/2); All input and output parameters are organized in rows, one row  corresponds to the parameters of one channel see also <a href="acovf.html" class="code" title="function [ACF,NN] = acovf(Z,KMAX,Mode,Mode2);">ACOVF</a> <a href="acorf.html" class="code" title="function [AUTOCOV,stderr,lpq,qpval] = acorf(Z,N);">ACORF</a> <a href="ar2rc.html" class="code" title="function [MX,res,arg3] = ar2rc(ar);">AR2RC</a> <a href="rc2ar.html" class="code" title="function [MX,res,arg3,acf] = rc2ar(rc);">RC2AR</a> <a href="durlev.html" class="code" title="function [MX,res,arg3] = durlev(AutoCov);">DURLEV</a> <a href="sumskipnan.html" class="code" title="function [o,count,SSQ,S4M] = sumskipnan(i,DIM)">SUMSKIPNAN</a> REFERENCE(S):  J.P. Burg, &quot;Maximum Entropy Spectral Analysis&quot; Proc. 37th Meeting of the Society of Exp. Geophysiscists, Oklahoma City, OK 1967  J.P. Burg, &quot;Maximum Entropy Spectral Analysis&quot; PhD-thesis, Dept. of Geophysics, Stanford University, Stanford, CA. 1975.  P.J. Brockwell and R. A. Davis &quot;Time Series: Theory and Methods&quot;, 2nd ed. Springer, 1991.  S.   Haykin &quot;Adaptive Filter Theory&quot; 3rd ed. Prentice Hall, 1996.  M.B. Priestley &quot;Spectral Analysis and Time Series&quot; Academic Press, 1981.  W.S. Wei &quot;Time Series Analysis&quot; Addison Wesley, 1990.</pre></div><!-- crossreference --><h2><a name="_cross"></a>CROSS-REFERENCE INFORMATION <a href="#_top"><img alt="^" border="0" src="../up.png"></a></h2>This function calls:<ul style="list-style-image:url(../matlabicon.gif)"><li><a href="sumskipnan.html" class="code" title="function [o,count,SSQ,S4M] = sumskipnan(i,DIM)">sumskipnan</a>	SUMSKIPNAN adds all non-NaN values.</li></ul>This function is called by:<ul style="list-style-image:url(../matlabicon.gif)"><li><a href="demoperf.html" class="code" title="">demoperf</a>	Demonstrates the much higher performance</li><li><a href="invest0.html" class="code" title="function [AutoCov,AutoCorr,MX,E,NC]=invest0(Y,Pmax,Mode);">invest0</a>	First Investigation of a signal (time series) - automated part</li><li><a href="invfdemo.html" class="code" title="">invfdemo</a>	invfdemo	demonstrates Inverse Filtering</li><li><a href="lpc.html" class="code" title="function [A] = lpc(Y,P,mode);">lpc</a>	LPC Linear prediction coefficients</li></ul><!-- crossreference --><hr><address>Generated on Tue 17-Aug-2004 00:13:21 by <strong><a href="http://www.artefact.tk/software/matlab/m2html/">m2html</a></strong> &copy; 2003</address></body></html>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -