⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 mvar.html

📁 时间序列分析的工具箱,里面有html说明
💻 HTML
字号:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"                "http://www.w3.org/TR/REC-html40/loose.dtd"><html><head>  <title>Description of mvar</title>  <meta name="keywords" content="mvar">  <meta name="description" content="Estimates Multi-Variate AutoRegressive model parameters">  <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">  <meta name="generator" content="m2html &copy; 2003 Guillaume Flandin">  <meta name="robots" content="index, follow">  <link type="text/css" rel="stylesheet" href="../m2html.css"></head><body><a name="_top"></a><div><a href="../index.html">Home</a> &gt;  <a href="index.html">tsa</a> &gt; mvar.m</div><!--<table width="100%"><tr><td align="left"><a href="../index.html"><img alt="<" border="0" src="../left.png">&nbsp;Master index</a></td><td align="right"><a href="index.html">Index for tsa&nbsp;<img alt=">" border="0" src="../right.png"></a></td></tr></table>--><h1>mvar</h1><h2><a name="_name"></a>PURPOSE <a href="#_top"><img alt="^" border="0" src="../up.png"></a></h2><div class="box"><strong>Estimates Multi-Variate AutoRegressive model parameters</strong></div><h2><a name="_synopsis"></a>SYNOPSIS <a href="#_top"><img alt="^" border="0" src="../up.png"></a></h2><div class="box"><strong>function [ARF,RCF,PE,DC,varargout] = mvar(Y, Pmax, Mode); </strong></div><h2><a name="_description"></a>DESCRIPTION <a href="#_top"><img alt="^" border="0" src="../up.png"></a></h2><div class="fragment"><pre class="comment"> Estimates Multi-Variate AutoRegressive model parameters  function  [AR,RC,PE] = mvar(Y, Pmax);  INPUT: Y    Multivariate data series  Pmax     Model order  OUTPUT AR    multivariate autoregressive model parameter (same format as in [4]     RC    reflection coefficients (= -PARCOR coefficients) PE    remaining error variance All input and output parameters are organized in columns, one column  corresponds to the parameters of one channel. A multivariate inverse filter can be realized with        [AR,RC,PE] = mvar(Y,P);    e = mvfilter([eye(size(AR,1)),-AR],eye(size(AR(1))),Y); see also: <a href="mvfilter.html" class="code" title="function [x,z]=mvfilter(B,A,x,z)">MVFILTER</a>, <a href="covm.html" class="code" title="function [CC,NN] = covm(X,Y,Mode);">COVM</a>, <a href="sumskipnan.html" class="code" title="function [o,count,SSQ,S4M] = sumskipnan(i,DIM)">SUMSKIPNAN</a>, <a href="arfit2.html" class="code" title="function [w, MAR, C, sbc, fpe, th]=arfit2(Y, pmin, pmax, selector, no_const)">ARFIT2</a></pre></div><!-- crossreference --><h2><a name="_cross"></a>CROSS-REFERENCE INFORMATION <a href="#_top"><img alt="^" border="0" src="../up.png"></a></h2>This function calls:<ul style="list-style-image:url(../matlabicon.gif)"><li><a href="covm.html" class="code" title="function [CC,NN] = covm(X,Y,Mode);">covm</a>	COVM generates covariance matrix</li><li><a href="mvar.html" class="code" title="function [ARF,RCF,PE,DC,varargout] = mvar(Y, Pmax, Mode);">mvar</a>	Estimates Multi-Variate AutoRegressive model parameters</li><li><a href="mvfilter.html" class="code" title="function [x,z]=mvfilter(B,A,x,z)">mvfilter</a>	Multi-variate filter function</li></ul>This function is called by:<ul style="list-style-image:url(../matlabicon.gif)"><li><a href="arfit2.html" class="code" title="function [w, MAR, C, sbc, fpe, th]=arfit2(Y, pmin, pmax, selector, no_const)">arfit2</a>	ARFIT2 estimates multivariate autoregressive parameters</li><li><a href="mvar.html" class="code" title="function [ARF,RCF,PE,DC,varargout] = mvar(Y, Pmax, Mode);">mvar</a>	Estimates Multi-Variate AutoRegressive model parameters</li></ul><!-- crossreference --><hr><address>Generated on Tue 17-Aug-2004 00:13:21 by <strong><a href="http://www.artefact.tk/software/matlab/m2html/">m2html</a></strong> &copy; 2003</address></body></html>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -