⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 durlev.html

📁 时间序列分析的工具箱,里面有html说明
💻 HTML
字号:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"                "http://www.w3.org/TR/REC-html40/loose.dtd"><html><head>  <title>Description of durlev</title>  <meta name="keywords" content="durlev">  <meta name="description" content="function  [AR,RC,PE] = durlev(ACF);">  <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">  <meta name="generator" content="m2html &copy; 2003 Guillaume Flandin">  <meta name="robots" content="index, follow">  <link type="text/css" rel="stylesheet" href="../m2html.css"></head><body><a name="_top"></a><div><a href="../index.html">Home</a> &gt;  <a href="index.html">tsa</a> &gt; durlev.m</div><!--<table width="100%"><tr><td align="left"><a href="../index.html"><img alt="<" border="0" src="../left.png">&nbsp;Master index</a></td><td align="right"><a href="index.html">Index for tsa&nbsp;<img alt=">" border="0" src="../right.png"></a></td></tr></table>--><h1>durlev</h1><h2><a name="_name"></a>PURPOSE <a href="#_top"><img alt="^" border="0" src="../up.png"></a></h2><div class="box"><strong>function  [AR,RC,PE] = durlev(ACF);</strong></div><h2><a name="_synopsis"></a>SYNOPSIS <a href="#_top"><img alt="^" border="0" src="../up.png"></a></h2><div class="box"><strong>function [MX,res,arg3] = durlev(AutoCov); </strong></div><h2><a name="_description"></a>DESCRIPTION <a href="#_top"><img alt="^" border="0" src="../up.png"></a></h2><div class="fragment"><pre class="comment"> function  [AR,RC,PE] = durlev(ACF); function  [MX,PE] = durlev(ACF); estimates AR(p) model parameter by solving the Yule-Walker with the Durbin-Levinson recursion for multiple channels  INPUT: ACF    Autocorrelation function from lag=[0:p]  OUTPUT AR    autoregressive model parameter     RC    reflection coefficients (= -PARCOR coefficients) PE    remaining error variance MX    transformation matrix between ARP and RC (Attention: needs O(p^2) memory)        AR(:,K) = MX(:,K*(K-1)/2+(1:K));        RC(:,K) = MX(:,(1:K).*(2:K+1)/2); All input and output parameters are organized in rows, one row  corresponds to the parameters of one channel see also <a href="acovf.html" class="code" title="function [ACF,NN] = acovf(Z,KMAX,Mode,Mode2);">ACOVF</a> <a href="acorf.html" class="code" title="function [AUTOCOV,stderr,lpq,qpval] = acorf(Z,N);">ACORF</a> <a href="ar2rc.html" class="code" title="function [MX,res,arg3] = ar2rc(ar);">AR2RC</a> <a href="rc2ar.html" class="code" title="function [MX,res,arg3,acf] = rc2ar(rc);">RC2AR</a> <a href="lattice.html" class="code" title="function [MX,PE,arg3] = lattice(Y,lc,Mode);">LATTICE</a> REFERENCES:  Levinson N. (1947) &quot;The Wiener RMS(root-mean-square) error criterion in filter design and prediction.&quot; J. Math. Phys., 25, pp.261-278.  Durbin J. (1960) &quot;The fitting of time series models.&quot; Rev. Int. Stat. Inst. vol 28., pp 233-244.  P.J. Brockwell and R. A. Davis &quot;Time Series: Theory and Methods&quot;, 2nd ed. Springer, 1991.  S. Haykin &quot;Adaptive Filter Theory&quot; 3rd ed. Prentice Hall, 1996.  M.B. Priestley &quot;Spectral Analysis and Time Series&quot; Academic Press, 1981.  W.S. Wei &quot;Time Series Analysis&quot; Addison Wesley, 1990.</pre></div><!-- crossreference --><h2><a name="_cross"></a>CROSS-REFERENCE INFORMATION <a href="#_top"><img alt="^" border="0" src="../up.png"></a></h2>This function calls:<ul style="list-style-image:url(../matlabicon.gif)"></ul>This function is called by:<ul style="list-style-image:url(../matlabicon.gif)"><li><a href="ac2poly.html" class="code" title="function [A,E] = ac2poly(acf);">ac2poly</a>	converts the autocorrelation sequence into an AR polynomial</li><li><a href="ac2rc.html" class="code" title="function [RC,efinal] = ac2rc(AC);">ac2rc</a>	converts the autocorrelation function into reflection coefficients</li><li><a href="pacf.html" class="code" title="function [PARCOR,sig,cil,ciu]= pacf(Z,KMAX);">pacf</a>	Partial Autocorrelation function</li><li><a href="parcor.html" class="code" title="function [PARCOR,ARP, PE] = parcor(AutoCov);">parcor</a>	estimates partial autocorrelation coefficients</li></ul><!-- crossreference --><hr><address>Generated on Tue 17-Aug-2004 00:13:21 by <strong><a href="http://www.artefact.tk/software/matlab/m2html/">m2html</a></strong> &copy; 2003</address></body></html>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -