⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 aar.html

📁 时间序列分析的工具箱,里面有html说明
💻 HTML
字号:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"                "http://www.w3.org/TR/REC-html40/loose.dtd"><html><head>  <title>Description of aar</title>  <meta name="keywords" content="aar">  <meta name="description" content="Calculates adaptive autoregressive (AAR) and adaptive autoregressive moving average estimates (AARMA)">  <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">  <meta name="generator" content="m2html &copy; 2003 Guillaume Flandin">  <meta name="robots" content="index, follow">  <link type="text/css" rel="stylesheet" href="../m2html.css"></head><body><a name="_top"></a><div><a href="../index.html">Home</a> &gt;  <a href="index.html">tsa</a> &gt; aar.m</div><!--<table width="100%"><tr><td align="left"><a href="../index.html"><img alt="<" border="0" src="../left.png">&nbsp;Master index</a></td><td align="right"><a href="index.html">Index for tsa&nbsp;<img alt=">" border="0" src="../right.png"></a></td></tr></table>--><h1>aar</h1><h2><a name="_name"></a>PURPOSE <a href="#_top"><img alt="^" border="0" src="../up.png"></a></h2><div class="box"><strong>Calculates adaptive autoregressive (AAR) and adaptive autoregressive moving average estimates (AARMA)</strong></div><h2><a name="_synopsis"></a>SYNOPSIS <a href="#_top"><img alt="^" border="0" src="../up.png"></a></h2><div class="box"><strong>function [a,e,REV,TOC,CPUTIME,ESU] = aar(y, Mode, arg3, arg4, arg5, arg6, arg7, arg8, arg9); </strong></div><h2><a name="_description"></a>DESCRIPTION <a href="#_top"><img alt="^" border="0" src="../up.png"></a></h2><div class="fragment"><pre class="comment"> Calculates adaptive autoregressive (AAR) and adaptive autoregressive moving average estimates (AARMA) of real-valued data series using Kalman filter algorithm. [a,e,REV] = aar(y, mode, MOP, UC, a0, A, W, V);  The AAR process is described as following         y(k) - a(k,1)*y(t-1) -...- a(k,p)*y(t-p) = e(k); The AARMA process is described as following         y(k) - a(k,1)*y(t-1) -...- a(k,p)*y(t-p) = e(k) + b(k,1)*e(t-1) + ... + b(k,q)*e(t-q); Input:       y       Signal (AR-Process)       Mode    is a two-element vector [aMode, vMode],                aMode determines 1 (out of 12) methods for updating the co-variance matrix (see also [1])               vMode determines 1 (out of 7) methods for estimating the innovation variance (see also [1])               aMode=1, vmode=2 is the RLS algorithm as used in [2]               aMode=-1, LMS algorithm (signal normalized)               aMode=-2, LMS algorithm with adaptive normalization       MOP     model order, default [10,0]               MOP=[p]         AAR(p) model. p AR parameters               MOP=[p,q]       AARMA(p,q) model, p AR parameters and q MA coefficients       UC      Update Coefficient, default 0       a0      Initial <a href="aar.html" class="code" title="function [a,e,REV,TOC,CPUTIME,ESU] = aar(y, Mode, arg3, arg4, arg5, arg6, arg7, arg8, arg9);">AAR</a> parameters [a(0,1), a(0,2), ..., a(0,p),b(0,1),b(0,2), ..., b(0,q)]                (row vector with p+q elements, default zeros(1,p) )       A       Initial Covariance matrix (positive definite pxp-matrix, default eye(p))    W    system noise (required for aMode==0)    V    observation noise (required for vMode==0) Output:       a       AAR(MA) estimates [a(k,1), a(k,2), ..., a(k,p),b(k,1),b(k,2), ..., b(k,q]       e       error process (Adaptively filtered process)       REV     relative error variance MSE/MSY Hint: The mean square (prediction) error of different variants is useful for determining the free parameters (Mode, MOP, UC) REFERENCE(S): [1] A. Schloegl (2000), The electroencephalogram and the adaptive autoregressive model: theory and applications.     ISBN 3-8265-7640-3 Shaker Verlag, Aachen, Germany. More references can be found at     http://www.dpmi.tu-graz.ac.at/~schloegl/publications/</pre></div><!-- crossreference --><h2><a name="_cross"></a>CROSS-REFERENCE INFORMATION <a href="#_top"><img alt="^" border="0" src="../up.png"></a></h2>This function calls:<ul style="list-style-image:url(../matlabicon.gif)"><li><a href="detrend.html" class="code" title="function [X,T]=detrend(t,X,p)">detrend</a>	DETREND removes the trend from data, NaN's are considered as missing values</li></ul>This function is called by:<ul style="list-style-image:url(../matlabicon.gif)"></ul><!-- crossreference --><hr><address>Generated on Tue 17-Aug-2004 00:13:21 by <strong><a href="http://www.artefact.tk/software/matlab/m2html/">m2html</a></strong> &copy; 2003</address></body></html>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -