⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 sacsng.c

📁 u-boot-1.1.6 源码包
💻 C
📖 第 1 页 / 共 2 页
字号:
     * Note: iop is used by the I2C macros, and iopa by the ADC/DAC initialization.     */    volatile ioport_t *iopa = ioport_addr((immap_t *)CFG_IMMR, 0 /* port A */);    volatile ioport_t *iop  = ioport_addr((immap_t *)CFG_IMMR, I2C_PORT);    int  reg;          /* I2C register value */    char *ep;          /* Environment pointer */    char str_buf[12] ; /* sprintf output buffer */    int  sample_rate;  /* ADC/DAC sample rate */    int  sample_64x;   /* Use  64/4 clocking for the ADC/DAC */    int  sample_128x;  /* Use 128/4 clocking for the ADC/DAC */    int  right_just;   /* Is the data to the DAC right justified? */    int  mclk_divide;  /* MCLK Divide */    int  quiet;        /* Quiet or minimal output mode */    quiet = 0;    if ((ep = getenv("quiet")) != NULL) {	quiet = simple_strtol(ep, NULL, 10);    }    else {	setenv("quiet", "0");    }    /*     * SACSng custom initialization:     *    Start the ADC and DAC clocks, since the Crystal parts do not     *    work on the I2C bus until the clocks are running.     */    sample_rate = INITIAL_SAMPLE_RATE;    if ((ep = getenv("DaqSampleRate")) != NULL) {	sample_rate = simple_strtol(ep, NULL, 10);    }    sample_64x  = INITIAL_SAMPLE_64X;    sample_128x = INITIAL_SAMPLE_128X;    if ((ep = getenv("Daq64xSampling")) != NULL) {	sample_64x = simple_strtol(ep, NULL, 10);	if (sample_64x) {	    sample_128x = 0;	}	else {	    sample_128x = 1;	}    }    else {	if ((ep = getenv("Daq128xSampling")) != NULL) {	    sample_128x = simple_strtol(ep, NULL, 10);	    if (sample_128x) {		sample_64x = 0;	    }	    else {		sample_64x = 1;	    }	}    }    /*     * Stop the clocks and wait for at least 1 LRCLK period     * to make sure the clocking has really stopped.     */    Daq_Stop_Clocks();    udelay((1000000 / sample_rate) * NUM_LRCLKS_TO_STABILIZE);    /*     * Initialize the clocks with the new rates     */    Daq_Init_Clocks(sample_rate, sample_64x);    sample_rate = Daq_Get_SampleRate();    /*     * Start the clocks and wait for at least 1 LRCLK period     * to make sure the clocking has become stable.     */    Daq_Start_Clocks(sample_rate);    udelay((1000000 / sample_rate) * NUM_LRCLKS_TO_STABILIZE);    sprintf(str_buf, "%d", sample_rate);    setenv("DaqSampleRate", str_buf);    if (sample_64x) {	setenv("Daq64xSampling",  "1");	setenv("Daq128xSampling", NULL);    }    else {	setenv("Daq64xSampling",  NULL);	setenv("Daq128xSampling", "1");    }    /*     * Display the ADC/DAC clocking information     */    if (!quiet) {	Daq_Display_Clocks();    }    /*     * Determine the DAC data justification     */    right_just = INITIAL_RIGHT_JUST;    if ((ep = getenv("DaqDACRightJustified")) != NULL) {	right_just = simple_strtol(ep, NULL, 10);    }    sprintf(str_buf, "%d", right_just);    setenv("DaqDACRightJustified", str_buf);    /*     * Determine the DAC MCLK Divide     */    mclk_divide = INITIAL_MCLK_DIVIDE;    if ((ep = getenv("DaqDACMClockDivide")) != NULL) {	mclk_divide = simple_strtol(ep, NULL, 10);    }    sprintf(str_buf, "%d", mclk_divide);    setenv("DaqDACMClockDivide", str_buf);    /*     * Initializing the I2C address in the Crystal A/Ds:     *     * 1) Wait for VREF cap to settle (10uSec per uF)     * 2) Release pullup on SDATA     * 3) Write the I2C address to register 6     * 4) Enable address matching by setting the MSB in register 7     */    if (!quiet) {	printf("Initializing the ADC...\n");    }    udelay(ADC_INITIAL_DELAY);		/* 10uSec per uF of VREF cap */    iopa->pdat &= ~ADC_SDATA1_MASK;     /* release SDATA1 */    udelay(ADC_SDATA_DELAY);		/* arbitrary settling time */    i2c_reg_write(0x00, 0x06, I2C_ADC_1_ADDR);	/* set address */    i2c_reg_write(I2C_ADC_1_ADDR, 0x07,         /* turn on ADDREN */		  ADC_REG7_ADDR_ENABLE);    i2c_reg_write(I2C_ADC_1_ADDR, 0x02, /* 128x, slave mode, !HPEN */		  (sample_64x ? 0 : ADC_REG2_128x) |		  ADC_REG2_HIGH_PASS_DIS |		  ADC_REG2_SLAVE_MODE);    reg = i2c_reg_read(I2C_ADC_1_ADDR, 0x06) & 0x7F;    if(reg != I2C_ADC_1_ADDR)	printf("Init of ADC U10 failed: address is 0x%02X should be 0x%02X\n",	       reg, I2C_ADC_1_ADDR);    iopa->pdat &= ~ADC_SDATA2_MASK;	/* release SDATA2 */    udelay(ADC_SDATA_DELAY);		/* arbitrary settling time */    i2c_reg_write(0x00, 0x06, I2C_ADC_2_ADDR);	/* set address (do not set ADDREN yet) */    i2c_reg_write(I2C_ADC_2_ADDR, 0x02, /* 64x, slave mode, !HPEN */		  (sample_64x ? 0 : ADC_REG2_128x) |		  ADC_REG2_HIGH_PASS_DIS |		  ADC_REG2_SLAVE_MODE);    reg = i2c_reg_read(I2C_ADC_2_ADDR, 0x06) & 0x7F;    if(reg != I2C_ADC_2_ADDR)	printf("Init of ADC U15 failed: address is 0x%02X should be 0x%02X\n",	       reg, I2C_ADC_2_ADDR);    i2c_reg_write(I2C_ADC_1_ADDR, 0x01, /* set FSTART and GNDCAL */		  ADC_REG1_FRAME_START |		  ADC_REG1_GROUND_CAL);    i2c_reg_write(I2C_ADC_1_ADDR, 0x02, /* Start calibration */		  (sample_64x ? 0 : ADC_REG2_128x) |		  ADC_REG2_CAL |		  ADC_REG2_HIGH_PASS_DIS |		  ADC_REG2_SLAVE_MODE);    udelay(ADC_CAL_DELAY);		/* a minimum of 4100 LRCLKs */    i2c_reg_write(I2C_ADC_1_ADDR, 0x01, 0x00);	/* remove GNDCAL */    /*     * Now that we have synchronized the ADC's, enable address     * selection on the second ADC as well as the first.     */    i2c_reg_write(I2C_ADC_2_ADDR, 0x07, ADC_REG7_ADDR_ENABLE);    /*     * Initialize the Crystal DAC     *     * Two of the config lines are used for I2C so we have to set them     * to the proper initialization state without inadvertantly     * sending an I2C "start" sequence.  When we bring the I2C back to     * the normal state, we send an I2C "stop" sequence.     */    if (!quiet) {	printf("Initializing the DAC...\n");    }    /*     * Bring the I2C clock and data lines low for initialization     */    I2C_SCL(0);    I2C_DELAY;    I2C_SDA(0);    I2C_ACTIVE;    I2C_DELAY;    /* Reset the DAC */    iopa->pdat &= ~DAC_RST_MASK;    udelay(DAC_RESET_DELAY);    /* Release the DAC reset */    iopa->pdat |=  DAC_RST_MASK;    udelay(DAC_INITIAL_DELAY);    /*     * Cause the DAC to:     *     Enable control port (I2C mode)     *     Going into power down     */    i2c_reg_write(I2C_DAC_ADDR, 0x05,		  DAC_REG5_I2C_MODE |		  DAC_REG5_POWER_DOWN);    /*     * Cause the DAC to:     *     Enable control port (I2C mode)     *     Going into power down     *         . MCLK divide by 1     *         . MCLK divide by 2     */    i2c_reg_write(I2C_DAC_ADDR, 0x05,		  DAC_REG5_I2C_MODE |		  DAC_REG5_POWER_DOWN |		  (mclk_divide ? DAC_REG5_MCLK_DIV : 0));    /*     * Cause the DAC to:     *     Auto-mute disabled     *         . Format 0, left  justified 24 bits     *         . Format 3, right justified 24 bits     *     No de-emphasis     *         . Single speed mode     *         . Double speed mode     */    i2c_reg_write(I2C_DAC_ADDR, 0x01,		  (right_just ? DAC_REG1_RIGHT_JUST_24BIT :				DAC_REG1_LEFT_JUST_24_BIT) |		  DAC_REG1_DEM_NO |		  (sample_rate >= 50000 ? DAC_REG1_DOUBLE : DAC_REG1_SINGLE));    sprintf(str_buf, "%d",	    sample_rate >= 50000 ? DAC_REG1_DOUBLE : DAC_REG1_SINGLE);    setenv("DaqDACFunctionalMode", str_buf);    /*     * Cause the DAC to:     *     Enable control port (I2C mode)     *     Remove power down     *         . MCLK divide by 1     *         . MCLK divide by 2     */    i2c_reg_write(I2C_DAC_ADDR, 0x05,		  DAC_REG5_I2C_MODE |		  (mclk_divide ? DAC_REG5_MCLK_DIV : 0));    /*     * Create a I2C stop condition:     *     low->high on data while clock is high.     */    I2C_SCL(1);    I2C_DELAY;    I2C_SDA(1);    I2C_DELAY;    I2C_TRISTATE;    if (!quiet) {	printf("\n");    }#ifdef CONFIG_ETHER_LOOPBACK_TEST    /*     * Run the Ethernet loopback test     */    eth_loopback_test ();#endif /* CONFIG_ETHER_LOOPBACK_TEST */#ifdef CONFIG_SHOW_BOOT_PROGRESS    /*     * Turn off the RED fail LED now that we are up and running.     */    status_led_set(STATUS_LED_RED, STATUS_LED_OFF);#endif    return 0;}#ifdef CONFIG_SHOW_BOOT_PROGRESS/* * Show boot status: flash the LED if something goes wrong, indicating * that last thing that worked and thus, by implication, what is broken. * * This stores the last OK value in RAM so this will not work properly * before RAM is initialized.  Since it is being used for indicating * boot status (i.e. after RAM is initialized), that is OK. */static void flash_code(uchar number, uchar modulo, uchar digits){    int   j;    /*     * Recursively do upper digits.     */    if(digits > 1) {	flash_code(number / modulo, modulo, digits - 1);    }    number = number % modulo;    /*     * Zero is indicated by one long flash (dash).     */    if(number == 0) {	status_led_set(STATUS_LED_BOOT, STATUS_LED_ON);	udelay(1000000);	status_led_set(STATUS_LED_BOOT, STATUS_LED_OFF);	udelay(200000);    } else {	/*	 * Non-zero is indicated by short flashes, one per count.	 */	for(j = 0; j < number; j++) {	    status_led_set(STATUS_LED_BOOT, STATUS_LED_ON);	    udelay(100000);	    status_led_set(STATUS_LED_BOOT, STATUS_LED_OFF);	    udelay(200000);	}    }    /*     * Inter-digit pause: we've already waited 200 mSec, wait 1 sec total     */    udelay(700000);}static int last_boot_progress;void show_boot_progress (int status){    int i,j;    if(status > 0) {	last_boot_progress = status;    } else {	/*	 * If a specific failure code is given, flash this code	 * else just use the last success code we've seen	 */	if(status < -1)	    last_boot_progress = -status;	/*	 * Flash this code 5 times	 */	for(j=0; j<5; j++) {	    /*	     * Houston, we have a problem.	     * Blink the last OK status which indicates where things failed.	     */	    status_led_set(STATUS_LED_RED, STATUS_LED_ON);	    flash_code(last_boot_progress, 5, 3);	    /*	     * Delay 5 seconds between repetitions,	     * with the fault LED blinking	     */	    for(i=0; i<5; i++) {		status_led_set(STATUS_LED_RED, STATUS_LED_OFF);		udelay(500000);		status_led_set(STATUS_LED_RED, STATUS_LED_ON);		udelay(500000);	    }	}	/*	 * Reset the board to retry initialization.	 */	do_reset (NULL, 0, 0, NULL);    }}#endif /* CONFIG_SHOW_BOOT_PROGRESS *//* * The following are used to control the SPI chip selects for the SPI command. */#if (CONFIG_COMMANDS & CFG_CMD_SPI)#define SPI_ADC_CS_MASK	0x00000800#define SPI_DAC_CS_MASK	0x00001000void spi_adc_chipsel(int cs){    volatile ioport_t *iopd = ioport_addr((immap_t *)CFG_IMMR, 3 /* port D */);    if(cs)	iopd->pdat &= ~SPI_ADC_CS_MASK;	/* activate the chip select */    else	iopd->pdat |=  SPI_ADC_CS_MASK;	/* deactivate the chip select */}void spi_dac_chipsel(int cs){    volatile ioport_t *iopd = ioport_addr((immap_t *)CFG_IMMR, 3 /* port D */);    if(cs)	iopd->pdat &= ~SPI_DAC_CS_MASK;	/* activate the chip select */    else	iopd->pdat |=  SPI_DAC_CS_MASK;	/* deactivate the chip select */}/* * The SPI command uses this table of functions for controlling the SPI * chip selects: it calls the appropriate function to control the SPI * chip selects. */spi_chipsel_type spi_chipsel[] = {	spi_adc_chipsel,	spi_dac_chipsel};int spi_chipsel_cnt = sizeof(spi_chipsel) / sizeof(spi_chipsel[0]);#endif /* CFG_CMD_SPI */#endif /* CONFIG_MISC_INIT_R */#ifdef CONFIG_POST/* * Returns 1 if keys pressed to start the power-on long-running tests * Called from board_init_f(). */int post_hotkeys_pressed(void){	return 0;	/* No hotkeys supported */}#endif

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -