📄 sacsng.c
字号:
/* * (C) Copyright 2002 * Custom IDEAS, Inc. <www.cideas.com> * Gerald Van Baren <vanbaren@cideas.com> * * See file CREDITS for list of people who contributed to this * project. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, * MA 02111-1307 USA */#include <asm/u-boot.h>#include <common.h>#include <ioports.h>#include <mpc8260.h>#include <i2c.h>#include <spi.h>#include <command.h>#ifdef CONFIG_SHOW_BOOT_PROGRESS#include <status_led.h>#endif#ifdef CONFIG_ETHER_LOOPBACK_TESTextern void eth_loopback_test(void);#endif /* CONFIG_ETHER_LOOPBACK_TEST */extern int do_reset(cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]);#include "clkinit.h"#include "ioconfig.h" /* I/O configuration table *//* * PBI Page Based Interleaving * PSDMR_PBI page based interleaving * 0 bank based interleaving * External Address Multiplexing (EAMUX) adds a clock to address cycles * (this can help with marginal board layouts) * PSDMR_EAMUX adds a clock * 0 no extra clock * Buffer Command (BUFCMD) adds a clock to command cycles. * PSDMR_BUFCMD adds a clock * 0 no extra clock */#define CONFIG_PBI PSDMR_PBI#define PESSIMISTIC_SDRAM 0#define EAMUX 0 /* EST requires EAMUX */#define BUFCMD 0/* * ADC/DAC Defines: */#define INITIAL_SAMPLE_RATE 10016 /* Initial Daq sample rate */#define INITIAL_RIGHT_JUST 0 /* Initial DAC right justification */#define INITIAL_MCLK_DIVIDE 0 /* Initial MCLK Divide */#define INITIAL_SAMPLE_64X 1 /* Initial 64x clocking mode */#define INITIAL_SAMPLE_128X 0 /* Initial 128x clocking mode *//* * ADC Defines: */#define I2C_ADC_1_ADDR 0x0E /* I2C Address of the ADC #1 */#define I2C_ADC_2_ADDR 0x0F /* I2C Address of the ADC #2 */#define ADC_SDATA1_MASK 0x00020000 /* PA14 - CH12SDATA_PU */#define ADC_SDATA2_MASK 0x00010000 /* PA15 - CH34SDATA_PU */#define ADC_VREF_CAP 100 /* VREF capacitor in uF */#define ADC_INITIAL_DELAY (10 * ADC_VREF_CAP) /* 10 usec per uF, in usec */#define ADC_SDATA_DELAY 100 /* ADC SDATA release delay in usec */#define ADC_CAL_DELAY (1000000 / INITIAL_SAMPLE_RATE * 4500) /* Wait at least 4100 LRCLK's */#define ADC_REG1_FRAME_START 0x80 /* Frame start */#define ADC_REG1_GROUND_CAL 0x40 /* Ground calibration enable */#define ADC_REG1_ANA_MOD_PDOWN 0x20 /* Analog modulator section in power down */#define ADC_REG1_DIG_MOD_PDOWN 0x10 /* Digital modulator section in power down */#define ADC_REG2_128x 0x80 /* Oversample at 128x */#define ADC_REG2_CAL 0x40 /* System calibration enable */#define ADC_REG2_CHANGE_SIGN 0x20 /* Change sign enable */#define ADC_REG2_LR_DISABLE 0x10 /* Left/Right output disable */#define ADC_REG2_HIGH_PASS_DIS 0x08 /* High pass filter disable */#define ADC_REG2_SLAVE_MODE 0x04 /* Slave mode */#define ADC_REG2_DFS 0x02 /* Digital format select */#define ADC_REG2_MUTE 0x01 /* Mute */#define ADC_REG7_ADDR_ENABLE 0x80 /* Address enable */#define ADC_REG7_PEAK_ENABLE 0x40 /* Peak enable */#define ADC_REG7_PEAK_UPDATE 0x20 /* Peak update */#define ADC_REG7_PEAK_FORMAT 0x10 /* Peak display format */#define ADC_REG7_DIG_FILT_PDOWN 0x04 /* Digital filter power down enable */#define ADC_REG7_FIR2_IN_EN 0x02 /* External FIR2 input enable */#define ADC_REG7_PSYCHO_EN 0x01 /* External pyscho filter input enable *//* * DAC Defines: */#define I2C_DAC_ADDR 0x11 /* I2C Address of the DAC */#define DAC_RST_MASK 0x00008000 /* PA16 - DAC_RST* */#define DAC_RESET_DELAY 100 /* DAC reset delay in usec */#define DAC_INITIAL_DELAY 5000 /* DAC initialization delay in usec */#define DAC_REG1_AMUTE 0x80 /* Auto-mute */#define DAC_REG1_LEFT_JUST_24_BIT (0 << 4) /* Fmt 0: Left justified 24 bit */#define DAC_REG1_I2S_24_BIT (1 << 4) /* Fmt 1: I2S up to 24 bit */#define DAC_REG1_RIGHT_JUST_16BIT (2 << 4) /* Fmt 2: Right justified 16 bit */#define DAC_REG1_RIGHT_JUST_24BIT (3 << 4) /* Fmt 3: Right justified 24 bit */#define DAC_REG1_RIGHT_JUST_20BIT (4 << 4) /* Fmt 4: Right justified 20 bit */#define DAC_REG1_RIGHT_JUST_18BIT (5 << 4) /* Fmt 5: Right justified 18 bit */#define DAC_REG1_DEM_NO (0 << 2) /* No De-emphasis */#define DAC_REG1_DEM_44KHZ (1 << 2) /* 44.1KHz De-emphasis */#define DAC_REG1_DEM_48KHZ (2 << 2) /* 48KHz De-emphasis */#define DAC_REG1_DEM_32KHZ (3 << 2) /* 32KHz De-emphasis */#define DAC_REG1_SINGLE 0 /* 4- 50KHz sample rate */#define DAC_REG1_DOUBLE 1 /* 50-100KHz sample rate */#define DAC_REG1_QUAD 2 /* 100-200KHz sample rate */#define DAC_REG1_DSD 3 /* Direct Stream Data, DSD */#define DAC_REG5_INVERT_A 0x80 /* Invert channel A */#define DAC_REG5_INVERT_B 0x40 /* Invert channel B */#define DAC_REG5_I2C_MODE 0x20 /* Control port (I2C) mode */#define DAC_REG5_POWER_DOWN 0x10 /* Power down mode */#define DAC_REG5_MUTEC_A_B 0x08 /* Mutec A=B */#define DAC_REG5_FREEZE 0x04 /* Freeze */#define DAC_REG5_MCLK_DIV 0x02 /* MCLK divide by 2 */#define DAC_REG5_RESERVED 0x01 /* Reserved *//* ------------------------------------------------------------------------- *//* * Check Board Identity: */int checkboard(void){ printf ("SACSng\n"); return 0;}/* ------------------------------------------------------------------------- */long int initdram(int board_type){ volatile immap_t *immap = (immap_t *)CFG_IMMR; volatile memctl8260_t *memctl = &immap->im_memctl; volatile uchar c = 0; volatile uchar *ramaddr = (uchar *)(CFG_SDRAM_BASE + 0x8); uint psdmr = CFG_PSDMR; int i; uint psrt = 14; /* for no SPD */ uint chipselects = 1; /* for no SPD */ uint sdram_size = CFG_SDRAM0_SIZE * 1024 * 1024; /* for no SPD */ uint or = CFG_OR2_PRELIM; /* for no SPD */#ifdef SDRAM_SPD_ADDR uint data_width; uint rows; uint banks; uint cols; uint caslatency; uint width; uint rowst; uint sdam; uint bsma; uint sda10; u_char spd_size; u_char data; u_char cksum; int j;#endif#ifdef SDRAM_SPD_ADDR /* Keep the compiler from complaining about potentially uninitialized vars */ data_width = chipselects = rows = banks = cols = caslatency = psrt = 0; /* * Read the SDRAM SPD EEPROM via I2C. */ i2c_read(SDRAM_SPD_ADDR, 0, 1, &data, 1); spd_size = data; cksum = data; for(j = 1; j < 64; j++) { /* read only the checksummed bytes */ /* note: the I2C address autoincrements when alen == 0 */ i2c_read(SDRAM_SPD_ADDR, 0, 0, &data, 1); if(j == 5) chipselects = data & 0x0F; else if(j == 6) data_width = data; else if(j == 7) data_width |= data << 8; else if(j == 3) rows = data & 0x0F; else if(j == 4) cols = data & 0x0F; else if(j == 12) { /* * Refresh rate: this assumes the prescaler is set to * approximately 1uSec per tick. */ switch(data & 0x7F) { default: case 0: psrt = 14 ; /* 15.625uS */ break; case 1: psrt = 2; /* 3.9uS */ break; case 2: psrt = 6; /* 7.8uS */ break; case 3: psrt = 29; /* 31.3uS */ break; case 4: psrt = 60; /* 62.5uS */ break; case 5: psrt = 120; /* 125uS */ break; } } else if(j == 17) banks = data; else if(j == 18) { caslatency = 3; /* default CL */#if(PESSIMISTIC_SDRAM) if((data & 0x04) != 0) caslatency = 3; else if((data & 0x02) != 0) caslatency = 2; else if((data & 0x01) != 0) caslatency = 1;#else if((data & 0x01) != 0) caslatency = 1; else if((data & 0x02) != 0) caslatency = 2; else if((data & 0x04) != 0) caslatency = 3;#endif else { printf ("WARNING: Unknown CAS latency 0x%02X, using 3\n", data); } } else if(j == 63) { if(data != cksum) { printf ("WARNING: Configuration data checksum failure:" " is 0x%02x, calculated 0x%02x\n", data, cksum); } } cksum += data; } /* We don't trust CL less than 2 (only saw it on an old 16MByte DIMM) */ if(caslatency < 2) { printf("WARNING: CL was %d, forcing to 2\n", caslatency); caslatency = 2; } if(rows > 14) { printf("WARNING: This doesn't look good, rows = %d, should be <= 14\n", rows); rows = 14; } if(cols > 11) { printf("WARNING: This doesn't look good, columns = %d, should be <= 11\n", cols); cols = 11; } if((data_width != 64) && (data_width != 72)) { printf("WARNING: SDRAM width unsupported, is %d, expected 64 or 72.\n", data_width); } width = 3; /* 2^3 = 8 bytes = 64 bits wide */ /* * Convert banks into log2(banks) */ if (banks == 2) banks = 1; else if(banks == 4) banks = 2; else if(banks == 8) banks = 3; sdram_size = 1 << (rows + cols + banks + width);#if(CONFIG_PBI == 0) /* bank-based interleaving */ rowst = ((32 - 6) - (rows + cols + width)) * 2;#else rowst = 32 - (rows + banks + cols + width);#endif or = ~(sdram_size - 1) | /* SDAM address mask */ ((banks-1) << 13) | /* banks per device */ (rowst << 9) | /* rowst */ ((rows - 9) << 6); /* numr */ memctl->memc_or2 = or; /* * SDAM specifies the number of columns that are multiplexed * (reference AN2165/D), defined to be (columns - 6) for page * interleave, (columns - 8) for bank interleave. * * BSMA is 14 - max(rows, cols). The bank select lines come * into play above the highest "address" line going into the * the SDRAM. */#if(CONFIG_PBI == 0) /* bank-based interleaving */ sdam = cols - 8; bsma = ((31 - width) - 14) - ((rows > cols) ? rows : cols); sda10 = sdam + 2;#else sdam = cols - 6; bsma = ((31 - width) - 14) - ((rows > cols) ? rows : cols); sda10 = sdam;#endif#if(PESSIMISTIC_SDRAM) psdmr = (CONFIG_PBI |\ PSDMR_RFEN |\ PSDMR_RFRC_16_CLK |\ PSDMR_PRETOACT_8W |\ PSDMR_ACTTORW_8W |\ PSDMR_WRC_4C |\ PSDMR_EAMUX |\ PSDMR_BUFCMD) |\ caslatency |\ ((caslatency - 1) << 6) | /* LDOTOPRE is CL - 1 */ \ (sdam << 24) |\ (bsma << 21) |\ (sda10 << 18);#else psdmr = (CONFIG_PBI |\ PSDMR_RFEN |\ PSDMR_RFRC_7_CLK |\ PSDMR_PRETOACT_3W | /* 1 for 7E parts (fast PC-133) */ \ PSDMR_ACTTORW_2W | /* 1 for 7E parts (fast PC-133) */ \ PSDMR_WRC_1C | /* 1 clock + 7nSec */ EAMUX |\ BUFCMD) |\ caslatency |\ ((caslatency - 1) << 6) | /* LDOTOPRE is CL - 1 */ \ (sdam << 24) |\ (bsma << 21) |\ (sda10 << 18);#endif#endif /* * Quote from 8260 UM (10.4.2 SDRAM Power-On Initialization, 10-35): * * "At system reset, initialization software must set up the * programmable parameters in the memory controller banks registers * (ORx, BRx, P/LSDMR). After all memory parameters are configured, * system software should execute the following initialization sequence * for each SDRAM device. * * 1. Issue a PRECHARGE-ALL-BANKS command * 2. Issue eight CBR REFRESH commands * 3. Issue a MODE-SET command to initialize the mode register * * Quote from Micron MT48LC8M16A2 data sheet: * * "...the SDRAM requires a 100uS delay prior to issuing any * command other than a COMMAND INHIBIT or NOP. Starting at some * point during this 100uS period and continuing at least through * the end of this period, COMMAND INHIBIT or NOP commands should * be applied." * * "Once the 100uS delay has been satisfied with at least one COMMAND * INHIBIT or NOP command having been applied, a /PRECHARGE command/ * should be applied. All banks must then be precharged, thereby * placing the device in the all banks idle state." * * "Once in the idle state, /two/ AUTO REFRESH cycles must be * performed. After the AUTO REFRESH cycles are complete, the * SDRAM is ready for mode register programming." * * (/emphasis/ mine, gvb) * * The way I interpret this, Micron start up sequence is: * 1. Issue a PRECHARGE-BANK command (initial precharge) * 2. Issue a PRECHARGE-ALL-BANKS command ("all banks ... precharged") * 3. Issue two (presumably, doing eight is OK) CBR REFRESH commands * 4. Issue a MODE-SET command to initialize the mode register * * -------- * * The initial commands are executed by setting P/LSDMR[OP] and * accessing the SDRAM with a single-byte transaction." * * The appropriate BRx/ORx registers have already been set when we * get here. The SDRAM can be accessed at the address CFG_SDRAM_BASE. */ memctl->memc_mptpr = CFG_MPTPR; memctl->memc_psrt = psrt; memctl->memc_psdmr = psdmr | PSDMR_OP_PREA; *ramaddr = c; memctl->memc_psdmr = psdmr | PSDMR_OP_CBRR; for (i = 0; i < 8; i++) *ramaddr = c; memctl->memc_psdmr = psdmr | PSDMR_OP_MRW; *ramaddr = c; memctl->memc_psdmr = psdmr | PSDMR_OP_NORM | PSDMR_RFEN; *ramaddr = c; /* * Do it a second time for the second set of chips if the DIMM has * two chip selects (double sided). */ if(chipselects > 1) { ramaddr += sdram_size; memctl->memc_br3 = CFG_BR3_PRELIM + sdram_size; memctl->memc_or3 = or; memctl->memc_psdmr = psdmr | PSDMR_OP_PREA; *ramaddr = c; memctl->memc_psdmr = psdmr | PSDMR_OP_CBRR; for (i = 0; i < 8; i++) *ramaddr = c; memctl->memc_psdmr = psdmr | PSDMR_OP_MRW; *ramaddr = c; memctl->memc_psdmr = psdmr | PSDMR_OP_NORM | PSDMR_RFEN; *ramaddr = c; } /* return total ram size */ return (sdram_size * chipselects);}/*----------------------------------------------------------------------- * Board Control Functions */void board_poweroff (void){ while (1); /* hang forever */}#ifdef CONFIG_MISC_INIT_R/* ------------------------------------------------------------------------- */int misc_init_r(void){ /*
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -