📄 spd_sdram.c
字号:
*/ trfc_low = (trfc_clk - 8) & 0xf; trfc_high = ((trfc_clk - 8) >> 4) & 0x3; /* * Sneak in some Extended Refresh Recovery. */ ddr->ext_refrec = (trfc_high << 16); debug("DDR: ext_refrec = 0x%08x\n", ddr->ext_refrec); ddr->timing_cfg_1 = (0 | ((picos_to_clk(spd.trp * 250) & 0x07) << 28) /* PRETOACT */ | ((picos_to_clk(spd.tras * 1000) & 0x0f ) << 24) /* ACTTOPRE */ | (trcd_clk << 20) /* ACTTORW */ | (caslat_ctrl << 16) /* CASLAT */ | (trfc_low << 12) /* REFEC */ | ((twr_clk & 0x07) << 8) /* WRRREC */ | ((picos_to_clk(spd.trrd * 250) & 0x07) << 4) /* ACTTOACT */ | ((twtr_clk & 0x07) << 0) /* WRTORD */ ); debug("DDR: timing_cfg_1 = 0x%08x\n", ddr->timing_cfg_1); /* * Timing_Config_2 * Was: 0x00000800; */ /* * Additive Latency * For DDR I, 0. * For DDR II, with ODT enabled, use "a value" less than ACTTORW, * which comes from Trcd, and also note that: * add_lat + caslat must be >= 4 */ add_lat = 0; if (spd.mem_type == SPD_MEMTYPE_DDR2 && (odt_wr_cfg || odt_rd_cfg) && (caslat < 4)) { add_lat = 4 - caslat; if (add_lat > trcd_clk) { add_lat = trcd_clk - 1; } } /* * Write Data Delay * Historically 0x2 == 4/8 clock delay. * Empirically, 0x3 == 6/8 clock delay is suggested for DDR I 266. */ wr_data_delay = 3; /* * Write Latency * Read to Precharge * Minimum CKE Pulse Width. * Four Activate Window */ if (spd.mem_type == SPD_MEMTYPE_DDR) { /* * This is a lie. It should really be 1, but if it is * set to 1, bits overlap into the old controller's * otherwise unused ACSM field. If we leave it 0, then * the HW will magically treat it as 1 for DDR 1. Oh Yea. */ wr_lat = 0; trtp_clk = 2; /* By the book. */ cke_min_clk = 1; /* By the book. */ four_act = 1; /* By the book. */ } else { wr_lat = caslat - 1; /* Convert SPD value from quarter nanos to picos. */ trtp_clk = picos_to_clk(spd.trtp * 250); cke_min_clk = 3; /* By the book. */ four_act = picos_to_clk(37500); /* By the book. 1k pages? */ } /* * Empirically set ~MCAS-to-preamble override for DDR 2. * Your milage will vary. */ cpo = 0; if (spd.mem_type == SPD_MEMTYPE_DDR2) { if (effective_data_rate == 266 || effective_data_rate == 333) { cpo = 0x7; /* READ_LAT + 5/4 */ } else if (effective_data_rate == 400) { cpo = 0x9; /* READ_LAT + 7/4 */ } else { /* Pure speculation */ cpo = 0xb; } } ddr->timing_cfg_2 = (0 | ((add_lat & 0x7) << 28) /* ADD_LAT */ | ((cpo & 0x1f) << 23) /* CPO */ | ((wr_lat & 0x7) << 19) /* WR_LAT */ | ((trtp_clk & 0x7) << 13) /* RD_TO_PRE */ | ((wr_data_delay & 0x7) << 10) /* WR_DATA_DELAY */ | ((cke_min_clk & 0x7) << 6) /* CKE_PLS */ | ((four_act & 0x1f) << 0) /* FOUR_ACT */ ); debug("DDR: timing_cfg_2 = 0x%08x\n", ddr->timing_cfg_2); /* * Determine the Mode Register Set. * * This is nominally part specific, but it appears to be * consistent for all DDR I devices, and for all DDR II devices. * * caslat must be programmed * burst length is always 4 * burst type is sequential * * For DDR I: * operating mode is "normal" * * For DDR II: * other stuff */ mode_caslat = 0; /* * Table lookup from DDR I or II Device Operation Specs. */ if (spd.mem_type == SPD_MEMTYPE_DDR) { if (1 <= caslat && caslat <= 4) { unsigned char mode_caslat_table[4] = { 0x5, /* 1.5 clocks */ 0x2, /* 2.0 clocks */ 0x6, /* 2.5 clocks */ 0x3 /* 3.0 clocks */ }; mode_caslat = mode_caslat_table[caslat - 1]; } else { puts("DDR I: Only CAS Latencies of 1.5, 2.0, " "2.5 and 3.0 clocks are supported.\n"); return 0; } } else { if (2 <= caslat && caslat <= 5) { mode_caslat = caslat; } else { puts("DDR II: Only CAS Latencies of 2.0, 3.0, " "4.0 and 5.0 clocks are supported.\n"); return 0; } } /* * Encoded Burst Lenght of 4. */ burst_len = 2; /* Fiat. */ if (spd.mem_type == SPD_MEMTYPE_DDR) { twr_auto_clk = 0; /* Historical */ } else { /* * Determine tCK max in picos. Grab tWR and convert to picos. * Auto-precharge write recovery is: * WR = roundup(tWR_ns/tCKmax_ns). * * Ponder: Is twr_auto_clk different than twr_clk? */ tCKmax_ps = convert_bcd_tenths_to_cycle_time_ps(spd.tckmax); twr_auto_clk = (spd.twr * 250 + tCKmax_ps - 1) / tCKmax_ps; } /* * Mode Reg in bits 16 ~ 31, * Extended Mode Reg 1 in bits 0 ~ 15. */ mode_odt_enable = 0x0; /* Default disabled */ if (odt_wr_cfg || odt_rd_cfg) { /* * Bits 6 and 2 in Extended MRS(1) * Bit 2 == 0x04 == 75 Ohm, with 2 DIMM modules. * Bit 6 == 0x40 == 150 Ohm, with 1 DIMM module. */ mode_odt_enable = 0x40; /* 150 Ohm */ } ddr->sdram_mode = (0 | (add_lat << (16 + 3)) /* Additive Latency in EMRS1 */ | (mode_odt_enable << 16) /* ODT Enable in EMRS1 */ | (twr_auto_clk << 9) /* Write Recovery Autopre */ | (mode_caslat << 4) /* caslat */ | (burst_len << 0) /* Burst length */ ); debug("DDR: sdram_mode = 0x%08x\n", ddr->sdram_mode); /* * Clear EMRS2 and EMRS3. */ ddr->sdram_mode_2 = 0; debug("DDR: sdram_mode_2 = 0x%08x\n", ddr->sdram_mode_2); /* * Determine Refresh Rate. */ refresh_clk = determine_refresh_rate(spd.refresh & 0x7); /* * Set BSTOPRE to 0x100 for page mode * If auto-charge is used, set BSTOPRE = 0 */ ddr->sdram_interval = (0 | (refresh_clk & 0x3fff) << 16 | 0x100 ); debug("DDR: sdram_interval = 0x%08x\n", ddr->sdram_interval); /* * Is this an ECC DDR chip? * But don't mess with it if the DDR controller will init mem. */#if defined(CONFIG_DDR_ECC) && !defined(CONFIG_ECC_INIT_VIA_DDRCONTROLLER) if (spd.config == 0x02) { ddr->err_disable = 0x0000000d; ddr->err_sbe = 0x00ff0000; } debug("DDR: err_disable = 0x%08x\n", ddr->err_disable); debug("DDR: err_sbe = 0x%08x\n", ddr->err_sbe);#endif asm("sync;isync;msync"); udelay(500); /* * SDRAM Cfg 2 */ /* * When ODT is enabled, Chap 9 suggests asserting ODT to * internal IOs only during reads. */ odt_cfg = 0; if (odt_rd_cfg | odt_wr_cfg) { odt_cfg = 0x2; /* ODT to IOs during reads */ } /* * Try to use differential DQS with DDR II. */ if (spd.mem_type == SPD_MEMTYPE_DDR) { dqs_cfg = 0; /* No Differential DQS for DDR I */ } else { dqs_cfg = 0x1; /* Differential DQS for DDR II */ }#if defined(CONFIG_ECC_INIT_VIA_DDRCONTROLLER) /* * Use the DDR controller to auto initialize memory. */ d_init = 1; ddr->sdram_data_init = CONFIG_MEM_INIT_VALUE; debug("DDR: ddr_data_init = 0x%08x\n", ddr->sdram_data_init);#else /* * Memory will be initialized via DMA, or not at all. */ d_init = 0;#endif ddr->sdram_cfg_2 = (0 | (dqs_cfg << 26) /* Differential DQS */ | (odt_cfg << 21) /* ODT */ | (d_init << 4) /* D_INIT auto init DDR */ ); debug("DDR: sdram_cfg_2 = 0x%08x\n", ddr->sdram_cfg_2);#ifdef MPC85xx_DDR_SDRAM_CLK_CNTL /* * Setup the clock control. * SDRAM_CLK_CNTL[0] = Source synchronous enable == 1 * SDRAM_CLK_CNTL[5-7] = Clock Adjust * 0110 3/4 cycle late * 0111 7/8 cycle late */ if (spd.mem_type == SPD_MEMTYPE_DDR) clk_adjust = 0x6; else clk_adjust = 0x7; ddr->sdram_clk_cntl = (0 | 0x80000000 | (clk_adjust << 23) ); debug("DDR: sdram_clk_cntl = 0x%08x\n", ddr->sdram_clk_cntl);#endif /* * Figure out the settings for the sdram_cfg register. * Build up the entire register in 'sdram_cfg' before writing * since the write into the register will actually enable the * memory controller; all settings must be done before enabling. * * sdram_cfg[0] = 1 (ddr sdram logic enable) * sdram_cfg[1] = 1 (self-refresh-enable) * sdram_cfg[5:7] = (SDRAM type = DDR SDRAM) * 010 DDR 1 SDRAM * 011 DDR 2 SDRAM */ sdram_type = (spd.mem_type == SPD_MEMTYPE_DDR) ? 2 : 3; sdram_cfg = (0 | (1 << 31) /* Enable */ | (1 << 30) /* Self refresh */ | (sdram_type << 24) /* SDRAM type */ ); /* * sdram_cfg[3] = RD_EN - registered DIMM enable * A value of 0x26 indicates micron registered DIMMS (micron.com) */ if (spd.mem_type == SPD_MEMTYPE_DDR && spd.mod_attr == 0x26) { sdram_cfg |= 0x10000000; /* RD_EN */ }#if defined(CONFIG_DDR_ECC) /* * If the user wanted ECC (enabled via sdram_cfg[2]) */ if (spd.config == 0x02) { sdram_cfg |= 0x20000000; /* ECC_EN */ }#endif /* * REV1 uses 1T timing. * REV2 may use 1T or 2T as configured by the user. */ { uint pvr = get_pvr(); if (pvr != PVR_85xx_REV1) {#if defined(CONFIG_DDR_2T_TIMING) /* * Enable 2T timing by setting sdram_cfg[16]. */ sdram_cfg |= 0x8000; /* 2T_EN */#endif } } /* * 200 painful micro-seconds must elapse between * the DDR clock setup and the DDR config enable. */ udelay(200); /* * Go! */ ddr->sdram_cfg = sdram_cfg; asm("sync;isync;msync"); udelay(500); debug("DDR: sdram_cfg = 0x%08x\n", ddr->sdram_cfg);#if defined(CONFIG_ECC_INIT_VIA_DDRCONTROLLER) /* * Poll until memory is initialized. * 512 Meg at 400 might hit this 200 times or so. */ while ((ddr->sdram_cfg_2 & (d_init << 4)) != 0) { udelay(1000); }#endif /* * Figure out memory size in Megabytes. */ memsize = n_ranks * rank_density / 0x100000; /* * Establish Local Access Window and TLB mappings for DDR memory. */ memsize = setup_laws_and_tlbs(memsize); if (memsize == 0) { return 0; } return memsize * 1024 * 1024;}/* * Setup Local Access Window and TLB1 mappings for the requested * amount of memory. Returns the amount of memory actually mapped * (usually the original request size), or 0 on error. */static unsigned intsetup_laws_and_tlbs(unsigned int memsize){ volatile immap_t *immap = (immap_t *)CFG_IMMR; volatile ccsr_local_ecm_t *ecm = &immap->im_local_ecm; unsigned int tlb_size; unsigned int law_size; unsigned int ram_tlb_index; unsigned int ram_tlb_address; /* * Determine size of each TLB1 entry. */ switch (memsize) { case 16: case 32: tlb_size = BOOKE_PAGESZ_16M; break; case 64: case 128: tlb_size = BOOKE_PAGESZ_64M; break; case 256: case 512: case 1024: case 2048: tlb_size = BOOKE_PAGESZ_256M; break; default: puts("DDR: only 16M,32M,64M,128M,256M,512M,1G and 2G are supported.\n"); /* * The memory was not able to be mapped. */ return 0; break; } /* * Configure DDR TLB1 entries. * Starting at TLB1 8, use no more than 8 TLB1 entries. */ ram_tlb_index = 8; ram_tlb_address = (unsigned int)CFG_DDR_SDRAM_BASE; while (ram_tlb_address < (memsize * 1024 * 1024) && ram_tlb_index < 16) { mtspr(MAS0, TLB1_MAS0(1, ram_tlb_index, 0)); mtspr(MAS1, TLB1_MAS1(1, 1, 0, 0, tlb_size)); mtspr(MAS2, TLB1_MAS2(E500_TLB_EPN(ram_tlb_address), 0, 0, 0, 0, 0, 0, 0, 0)); mtspr(MAS3, TLB1_MAS3(E500_TLB_RPN(ram_tlb_address), 0, 0, 0, 0, 0, 1, 0, 1, 0, 1)); asm volatile("isync;msync;tlbwe;isync"); debug("DDR: MAS0=0x%08x\n", TLB1_MAS0(1, ram_tlb_index, 0)); debug("DDR: MAS1=0x%08x\n", TLB1_MAS1(1, 1, 0, 0, tlb_size)); debug("DDR: MAS2=0x%08x\n", TLB1_MAS2(E500_TLB_EPN(ram_tlb_address), 0, 0, 0, 0, 0, 0, 0, 0)); debug("DDR: MAS3=0x%08x\n", TLB1_MAS3(E500_TLB_RPN(ram_tlb_address), 0, 0, 0, 0, 0, 1, 0, 1, 0, 1)); ram_tlb_address += (0x1000 << ((tlb_size - 1) * 2)); ram_tlb_index++; } /* * First supported LAW size is 16M, at LAWAR_SIZE_16M == 23. Fnord. */ law_size = 19 + __ilog2(memsize); /* * Set up LAWBAR for all of DDR. */ ecm->lawbar1 = ((CFG_DDR_SDRAM_BASE >> 12) & 0xfffff); ecm->lawar1 = (LAWAR_EN | LAWAR_TRGT_IF_DDR | (LAWAR_SIZE & law_size)); debug("DDR: LAWBAR1=0x%08x\n", ecm->lawbar1); debug("DDR: LARAR1=0x%08x\n", ecm->lawar1); /* * Confirm that the requested amount of memory was mapped. */ return memsize;}#endif /* CONFIG_SPD_EEPROM */#if defined(CONFIG_DDR_ECC) && !defined(CONFIG_ECC_INIT_VIA_DDRCONTROLLER)/* * Initialize all of memory for ECC, then enable errors. */voidddr_enable_ecc(unsigned int dram_size){ uint *p = 0; uint i = 0; volatile immap_t *immap = (immap_t *)CFG_IMMR; volatile ccsr_ddr_t *ddr= &immap->im_ddr; dma_init(); for (*p = 0; p < (uint *)(8 * 1024); p++) { if (((unsigned int)p & 0x1f) == 0) { ppcDcbz((unsigned long) p); } *p = (unsigned int)CONFIG_MEM_INIT_VALUE; if (((unsigned int)p & 0x1c) == 0x1c) { ppcDcbf((unsigned long) p); } } dma_xfer((uint *)0x002000, 0x002000, (uint *)0); /* 8K */ dma_xfer((uint *)0x004000, 0x004000, (uint *)0); /* 16K */ dma_xfer((uint *)0x008000, 0x008000, (uint *)0); /* 32K */ dma_xfer((uint *)0x010000, 0x010000, (uint *)0); /* 64K */ dma_xfer((uint *)0x020000, 0x020000, (uint *)0); /* 128k */ dma_xfer((uint *)0x040000, 0x040000, (uint *)0); /* 256k */ dma_xfer((uint *)0x080000, 0x080000, (uint *)0); /* 512k */ dma_xfer((uint *)0x100000, 0x100000, (uint *)0); /* 1M */ dma_xfer((uint *)0x200000, 0x200000, (uint *)0); /* 2M */ dma_xfer((uint *)0x400000, 0x400000, (uint *)0); /* 4M */ for (i = 1; i < dram_size / 0x800000; i++) { dma_xfer((uint *)(0x800000*i), 0x800000, (uint *)0); } /* * Enable errors for ECC. */ debug("DMA DDR: err_disable = 0x%08x\n", ddr->err_disable); ddr->err_disable = 0x00000000; asm("sync;isync;msync"); debug("DMA DDR: err_disable = 0x%08x\n", ddr->err_disable);}#endif /* CONFIG_DDR_ECC && ! CONFIG_ECC_INIT_VIA_DDRCONTROLLER */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -