⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 nand_legacy.c

📁 u-boot-1.1.6 源码包
💻 C
📖 第 1 页 / 共 3 页
字号:
			     ((ofs >> nand->page_shift) << nand->page_shift) + 				((ofs & (nand->oobblock - 1)) >> 1));	} else {		NanD_Address(nand, ADDR_COLUMN_PAGE, ofs);	}	/* treat crossing 8-byte OOB data for 2M x 8bit devices */	/* Note: datasheet says it should automaticaly wrap to the */	/*       next OOB block, but it didn't work here. mf.      */	if (nand->page256 && ofs + len > (ofs | 0x7) + 1) {		len256 = (ofs | 0x7) + 1 - ofs;		NanD_ReadBuf(nand, buf, len256);		NanD_Command(nand, NAND_CMD_READOOB);		NanD_Address(nand, ADDR_COLUMN_PAGE, ofs & (~0x1ff));	}	NanD_ReadBuf(nand, &buf[len256], len - len256);	*retlen = len;	/* Reading the full OOB data drops us off of the end of the page,	 * causing the flash device to go into busy mode, so we need	 * to wait until ready 11.4.1 and Toshiba TC58256FT nands */	ret = NanD_WaitReady(nand, 1);	NAND_DISABLE_CE(nand);  /* set pin high */	return ret;}/* write to the 16 bytes of oob data that correspond to a 512 byte * page or 2 256-byte pages. */int nand_write_oob(struct nand_chip* nand, size_t ofs, size_t len,		  size_t * retlen, const u_char * buf){	int len256 = 0;	int i;	unsigned long nandptr = nand->IO_ADDR;#ifdef PSYCHO_DEBUG	printf("nand_write_oob(%lx, %d): %2.2X %2.2X %2.2X %2.2X ... %2.2X %2.2X .. %2.2X %2.2X\n",	       (long)ofs, len, buf[0], buf[1], buf[2], buf[3],	       buf[8], buf[9], buf[14],buf[15]);#endif	NAND_ENABLE_CE(nand);  /* set pin low to enable chip */	/* Reset the chip */	NanD_Command(nand, NAND_CMD_RESET);	/* issue the Read2 command to set the pointer to the Spare Data Area. */	NanD_Command(nand, NAND_CMD_READOOB);	if (nand->bus16) { 		NanD_Address(nand, ADDR_COLUMN_PAGE,			     ((ofs >> nand->page_shift) << nand->page_shift) + 				((ofs & (nand->oobblock - 1)) >> 1));	} else { 		NanD_Address(nand, ADDR_COLUMN_PAGE, ofs);	}	/* update address for 2M x 8bit devices. OOB starts on the second */	/* page to maintain compatibility with nand_read_ecc. */	if (nand->page256) {		if (!(ofs & 0x8))			ofs += 0x100;		else			ofs -= 0x8;	}	/* issue the Serial Data In command to initial the Page Program process */	NanD_Command(nand, NAND_CMD_SEQIN);	if (nand->bus16) { 		NanD_Address(nand, ADDR_COLUMN_PAGE,			     ((ofs >> nand->page_shift) << nand->page_shift) + 				((ofs & (nand->oobblock - 1)) >> 1));	} else { 		NanD_Address(nand, ADDR_COLUMN_PAGE, ofs);	}	/* treat crossing 8-byte OOB data for 2M x 8bit devices */	/* Note: datasheet says it should automaticaly wrap to the */	/*       next OOB block, but it didn't work here. mf.      */	if (nand->page256 && ofs + len > (ofs | 0x7) + 1) {		len256 = (ofs | 0x7) + 1 - ofs;		for (i = 0; i < len256; i++)			WRITE_NAND(buf[i], nandptr);		NanD_Command(nand, NAND_CMD_PAGEPROG);		NanD_Command(nand, NAND_CMD_STATUS);#ifdef NAND_NO_RB   		{ u_char ret_val;			do {				ret_val = READ_NAND(nandptr); /* wait till ready */			} while ((ret_val & 0x40) != 0x40);		}#endif		if (READ_NAND(nandptr) & 1) {			puts ("Error programming oob data\n");			/* There was an error */			NAND_DISABLE_CE(nand);  /* set pin high */			*retlen = 0;			return -1;		}		NanD_Command(nand, NAND_CMD_SEQIN);		NanD_Address(nand, ADDR_COLUMN_PAGE, ofs & (~0x1ff));	}	if (nand->bus16) {		for (i = len256; i < len; i += 2) {			WRITE_NAND(buf[i] + (buf[i+1] << 8), nandptr);		}	} else {		for (i = len256; i < len; i++)			WRITE_NAND(buf[i], nandptr);	}	NanD_Command(nand, NAND_CMD_PAGEPROG);	NanD_Command(nand, NAND_CMD_STATUS);#ifdef NAND_NO_RB	{	u_char ret_val;		do {			ret_val = READ_NAND(nandptr); /* wait till ready */		} while ((ret_val & 0x40) != 0x40);	}#endif	if (READ_NAND(nandptr) & 1) {		puts ("Error programming oob data\n");		/* There was an error */		NAND_DISABLE_CE(nand);  /* set pin high */		*retlen = 0;		return -1;	}	NAND_DISABLE_CE(nand);  /* set pin high */	*retlen = len;	return 0;}int nand_legacy_erase(struct nand_chip* nand, size_t ofs, size_t len, int clean){	/* This is defined as a structure so it will work on any system	 * using native endian jffs2 (the default).	 */	static struct jffs2_unknown_node clean_marker = {		JFFS2_MAGIC_BITMASK,		JFFS2_NODETYPE_CLEANMARKER,		8		/* 8 bytes in this node */	};	unsigned long nandptr;	struct Nand *mychip;	int ret = 0;	if (ofs & (nand->erasesize-1) || len & (nand->erasesize-1)) {		printf ("Offset and size must be sector aligned, erasesize = %d\n",			(int) nand->erasesize);		return -1;	}	nandptr = nand->IO_ADDR;	/* Select the NAND device */#ifdef CONFIG_OMAP1510	archflashwp(0,0);#endif#ifdef CFG_NAND_WP	NAND_WP_OFF();#endif    NAND_ENABLE_CE(nand);  /* set pin low */	/* Check the WP bit */	NanD_Command(nand, NAND_CMD_STATUS);	if (!(READ_NAND(nand->IO_ADDR) & 0x80)) {		printf ("nand_write_ecc: Device is write protected!!!\n");		ret = -1;		goto out;	}	/* Check the WP bit */	NanD_Command(nand, NAND_CMD_STATUS);	if (!(READ_NAND(nand->IO_ADDR) & 0x80)) {		printf ("%s: Device is write protected!!!\n", __FUNCTION__);		ret = -1;		goto out;	}	/* FIXME: Do nand in the background. Use timers or schedule_task() */	while(len) {		/*mychip = &nand->chips[shr(ofs, nand->chipshift)];*/		mychip = &nand->chips[ofs >> nand->chipshift];		/* always check for bad block first, genuine bad blocks		 * should _never_  be erased.		 */		if (ALLOW_ERASE_BAD_DEBUG || !check_block(nand, ofs)) {			/* Select the NAND device */			NAND_ENABLE_CE(nand);  /* set pin low */			NanD_Command(nand, NAND_CMD_ERASE1);			NanD_Address(nand, ADDR_PAGE, ofs);			NanD_Command(nand, NAND_CMD_ERASE2);			NanD_Command(nand, NAND_CMD_STATUS);#ifdef NAND_NO_RB			{	u_char ret_val;				do {					ret_val = READ_NAND(nandptr); /* wait till ready */				} while ((ret_val & 0x40) != 0x40);			}#endif			if (READ_NAND(nandptr) & 1) {				printf ("%s: Error erasing at 0x%lx\n",					__FUNCTION__, (long)ofs);				/* There was an error */				ret = -1;				goto out;			}			if (clean) {				int n;	/* return value not used */				int p, l;				/* clean marker position and size depend				 * on the page size, since 256 byte pages				 * only have 8 bytes of oob data				 */				if (nand->page256) {					p = NAND_JFFS2_OOB8_FSDAPOS;					l = NAND_JFFS2_OOB8_FSDALEN;				} else {					p = NAND_JFFS2_OOB16_FSDAPOS;					l = NAND_JFFS2_OOB16_FSDALEN;				}				ret = nand_write_oob(nand, ofs + p, l, (size_t *)&n,						     (u_char *)&clean_marker);				/* quit here if write failed */				if (ret)					goto out;			}		}		ofs += nand->erasesize;		len -= nand->erasesize;	}out:	/* De-select the NAND device */	NAND_DISABLE_CE(nand);  /* set pin high */#ifdef CONFIG_OMAP1510    	archflashwp(0,1);#endif#ifdef CFG_NAND_WP	NAND_WP_ON();#endif	return ret;}static inline int nandcheck(unsigned long potential, unsigned long physadr){	return 0;}unsigned long nand_probe(unsigned long physadr){	struct nand_chip *nand = NULL;	int i = 0, ChipID = 1;#ifdef CONFIG_MTD_NAND_ECC_JFFS2	oob_config.ecc_pos[0] = NAND_JFFS2_OOB_ECCPOS0;	oob_config.ecc_pos[1] = NAND_JFFS2_OOB_ECCPOS1;	oob_config.ecc_pos[2] = NAND_JFFS2_OOB_ECCPOS2;	oob_config.ecc_pos[3] = NAND_JFFS2_OOB_ECCPOS3;	oob_config.ecc_pos[4] = NAND_JFFS2_OOB_ECCPOS4;	oob_config.ecc_pos[5] = NAND_JFFS2_OOB_ECCPOS5;	oob_config.eccvalid_pos = 4;#else	oob_config.ecc_pos[0] = NAND_NOOB_ECCPOS0;	oob_config.ecc_pos[1] = NAND_NOOB_ECCPOS1;	oob_config.ecc_pos[2] = NAND_NOOB_ECCPOS2;	oob_config.ecc_pos[3] = NAND_NOOB_ECCPOS3;	oob_config.ecc_pos[4] = NAND_NOOB_ECCPOS4;	oob_config.ecc_pos[5] = NAND_NOOB_ECCPOS5;	oob_config.eccvalid_pos = NAND_NOOB_ECCVPOS;#endif	oob_config.badblock_pos = 5;	for (i=0; i<CFG_MAX_NAND_DEVICE; i++) {		if (nand_dev_desc[i].ChipID == NAND_ChipID_UNKNOWN) {			nand = &nand_dev_desc[i];			break;		}	}	if (!nand)		return (0);	memset((char *)nand, 0, sizeof(struct nand_chip));	nand->IO_ADDR = physadr;	nand->cache_page = -1;  /* init the cache page */	NanD_ScanChips(nand);	if (nand->totlen == 0) {		/* no chips found, clean up and quit */		memset((char *)nand, 0, sizeof(struct nand_chip));		nand->ChipID = NAND_ChipID_UNKNOWN;		return (0);	}	nand->ChipID = ChipID;	if (curr_device == -1)		curr_device = i;	nand->data_buf = malloc (nand->oobblock + nand->oobsize);	if (!nand->data_buf) {		puts ("Cannot allocate memory for data structures.\n");		return (0);	}	return (nand->totlen);}#ifdef CONFIG_MTD_NAND_ECC/* * Pre-calculated 256-way 1 byte column parity */static const u_char nand_ecc_precalc_table[] = {	0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a,	0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00,	0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f,	0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65,	0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c,	0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66,	0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59,	0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03,	0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33,	0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69,	0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56,	0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c,	0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55,	0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f,	0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30,	0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a,	0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30,	0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a,	0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55,	0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f,	0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56,	0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c,	0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33,	0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69,	0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59,	0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03,	0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c,	0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66,	0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f,	0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65,	0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a,	0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00};/* * Creates non-inverted ECC code from line parity */static void nand_trans_result(u_char reg2, u_char reg3,	u_char *ecc_code){	u_char a, b, i, tmp1, tmp2;	/* Initialize variables */	a = b = 0x80;	tmp1 = tmp2 = 0;	/* Calculate first ECC byte */	for (i = 0; i < 4; i++) {		if (reg3 & a)		/* LP15,13,11,9 --> ecc_code[0] */			tmp1 |= b;		b >>= 1;		if (reg2 & a)		/* LP14,12,10,8 --> ecc_code[0] */			tmp1 |= b;		b >>= 1;		a >>= 1;	}	/* Calculate second ECC byte */	b = 0x80;	for (i = 0; i < 4; i++) {		if (reg3 & a)		/* LP7,5,3,1 --> ecc_code[1] */			tmp2 |= b;		b >>= 1;		if (reg2 & a)		/* LP6,4,2,0 --> ecc_code[1] */			tmp2 |= b;		b >>= 1;		a >>= 1;	}	/* Store two of the ECC bytes */	ecc_code[0] = tmp1;	ecc_code[1] = tmp2;}/* * Calculate 3 byte ECC code for 256 byte block */static void nand_calculate_ecc (const u_char *dat, u_char *ecc_code){	u_char idx, reg1, reg3;	int j;	/* Initialize variables */	reg1 = reg3 = 0;	ecc_code[0] = ecc_code[1] = ecc_code[2] = 0;	/* Build up column parity */	for(j = 0; j < 256; j++) {		/* Get CP0 - CP5 from table */		idx = nand_ecc_precalc_table[dat[j]];		reg1 ^= idx;		/* All bit XOR = 1 ? */		if (idx & 0x40) {			reg3 ^= (u_char) j;		}	}	/* Create non-inverted ECC code from line parity */	nand_trans_result((reg1 & 0x40) ? ~reg3 : reg3, reg3, ecc_code);	/* Calculate final ECC code */	ecc_code[0] = ~ecc_code[0];	ecc_code[1] = ~ecc_code[1];	ecc_code[2] = ((~reg1) << 2) | 0x03;}/* * Detect and correct a 1 bit error for 256 byte block */static int nand_correct_data (u_char *dat, u_char *read_ecc, u_char *calc_ecc){	u_char a, b, c, d1, d2, d3, add, bit, i;	/* Do error detection */	d1 = calc_ecc[0] ^ read_ecc[0];	d2 = calc_ecc[1] ^ read_ecc[1];	d3 = calc_ecc[2] ^ read_ecc[2];	if ((d1 | d2 | d3) == 0) {		/* No errors */		return 0;	} else {		a = (d1 ^ (d1 >> 1)) & 0x55;		b = (d2 ^ (d2 >> 1)) & 0x55;		c = (d3 ^ (d3 >> 1)) & 0x54;		/* Found and will correct single bit error in the data */		if ((a == 0x55) && (b == 0x55) && (c == 0x54)) {			c = 0x80;			add = 0;			a = 0x80;			for (i=0; i<4; i++) {				if (d1 & c)					add |= a;				c >>= 2;				a >>= 1;			}			c = 0x80;			for (i=0; i<4; i++) {				if (d2 & c)					add |= a;				c >>= 2;				a >>= 1;			}			bit = 0;			b = 0x04;			c = 0x80;			for (i=0; i<3; i++) {				if (d3 & c)					bit |= b;				c >>= 2;				b >>= 1;			}			b = 0x01;			a = dat[add];			a ^= (b << bit);			dat[add] = a;			return 1;		}		else {			i = 0;			while (d1) {				if (d1 & 0x01)					++i;				d1 >>= 1;			}			while (d2) {				if (d2 & 0x01)					++i;				d2 >>= 1;			}			while (d3) {				if (d3 & 0x01)					++i;				d3 >>= 1;			}			if (i == 1) {				/* ECC Code Error Correction */				read_ecc[0] = calc_ecc[0];				read_ecc[1] = calc_ecc[1];				read_ecc[2] = calc_ecc[2];				return 2;			}			else {				/* Uncorrectable Error */				return -1;			}		}	}	/* Should never happen */	return -1;}#endif#ifdef CONFIG_JFFS2_NANDint read_jffs2_nand(size_t start, size_t len,		size_t * retlen, u_char * buf, int nanddev){	return nand_legacy_rw(nand_dev_desc + nanddev, NANDRW_READ | NANDRW_JFFS2,			start, len, retlen, buf);}#endif /* CONFIG_JFFS2_NAND */#endif /* (CONFIG_COMMANDS & CFG_CMD_NAND) && defined(CFG_NAND_LEGACY) */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -