📄 nand_legacy.c
字号:
/* * (C) 2006 Denx * Driver for NAND support, Rick Bronson * borrowed heavily from: * (c) 1999 Machine Vision Holdings, Inc. * (c) 1999, 2000 David Woodhouse <dwmw2@infradead.org> * * Added 16-bit nand support * (C) 2004 Texas Instruments */#include <common.h>#include <command.h>#include <malloc.h>#include <asm/io.h>#include <watchdog.h>#ifdef CONFIG_SHOW_BOOT_PROGRESS# include <status_led.h># define SHOW_BOOT_PROGRESS(arg) show_boot_progress(arg)#else# define SHOW_BOOT_PROGRESS(arg)#endif#if (CONFIG_COMMANDS & CFG_CMD_NAND) && defined(CFG_NAND_LEGACY)#include <linux/mtd/nand_legacy.h>#include <linux/mtd/nand_ids.h>#include <jffs2/jffs2.h>#ifdef CONFIG_OMAP1510void archflashwp(void *archdata, int wp);#endif#define ROUND_DOWN(value,boundary) ((value) & (~((boundary)-1)))#undef PSYCHO_DEBUG#undef NAND_DEBUG/* ****************** WARNING ********************* * When ALLOW_ERASE_BAD_DEBUG is non-zero the erase command will * erase (or at least attempt to erase) blocks that are marked * bad. This can be very handy if you are _sure_ that the block * is OK, say because you marked a good block bad to test bad * block handling and you are done testing, or if you have * accidentally marked blocks bad. * * Erasing factory marked bad blocks is a _bad_ idea. If the * erase succeeds there is no reliable way to find them again, * and attempting to program or erase bad blocks can affect * the data in _other_ (good) blocks. */#define ALLOW_ERASE_BAD_DEBUG 0#define CONFIG_MTD_NAND_ECC /* enable ECC */#define CONFIG_MTD_NAND_ECC_JFFS2/* bits for nand_legacy_rw() `cmd'; or together as needed */#define NANDRW_READ 0x01#define NANDRW_WRITE 0x00#define NANDRW_JFFS2 0x02#define NANDRW_JFFS2_SKIP 0x04/* * Exported variables etc. *//* Definition of the out of band configuration structure */struct nand_oob_config { /* position of ECC bytes inside oob */ int ecc_pos[6]; /* position of bad blk flag inside oob -1 = inactive */ int badblock_pos; /* position of ECC valid flag inside oob -1 = inactive */ int eccvalid_pos;} oob_config = { {0}, 0, 0};struct nand_chip nand_dev_desc[CFG_MAX_NAND_DEVICE] = {{0}};int curr_device = -1; /* Current NAND Device *//* * Exported functionss */int nand_legacy_erase(struct nand_chip* nand, size_t ofs, size_t len, int clean);int nand_legacy_rw(struct nand_chip* nand, int cmd, size_t start, size_t len, size_t * retlen, u_char * buf);void nand_print(struct nand_chip *nand);void nand_print_bad(struct nand_chip *nand);int nand_read_oob(struct nand_chip* nand, size_t ofs, size_t len, size_t * retlen, u_char * buf);int nand_write_oob(struct nand_chip* nand, size_t ofs, size_t len, size_t * retlen, const u_char * buf);/* * Internals */static int NanD_WaitReady(struct nand_chip *nand, int ale_wait);static int nand_read_ecc(struct nand_chip *nand, size_t start, size_t len, size_t * retlen, u_char *buf, u_char *ecc_code);static int nand_write_ecc (struct nand_chip* nand, size_t to, size_t len, size_t * retlen, const u_char * buf, u_char * ecc_code);#ifdef CONFIG_MTD_NAND_ECCstatic int nand_correct_data (u_char *dat, u_char *read_ecc, u_char *calc_ecc);static void nand_calculate_ecc (const u_char *dat, u_char *ecc_code);#endif/* * * Function definitions * *//* returns 0 if block containing pos is OK: * valid erase block and * not marked bad, or no bad mark position is specified * returns 1 if marked bad or otherwise invalid */static int check_block (struct nand_chip *nand, unsigned long pos){ size_t retlen; uint8_t oob_data; uint16_t oob_data16[6]; int page0 = pos & (-nand->erasesize); int page1 = page0 + nand->oobblock; int badpos = oob_config.badblock_pos; if (pos >= nand->totlen) return 1; if (badpos < 0) return 0; /* no way to check, assume OK */ if (nand->bus16) { if (nand_read_oob(nand, (page0 + 0), 12, &retlen, (uint8_t *)oob_data16) || (oob_data16[2] & 0xff00) != 0xff00) return 1; if (nand_read_oob(nand, (page1 + 0), 12, &retlen, (uint8_t *)oob_data16) || (oob_data16[2] & 0xff00) != 0xff00) return 1; } else { /* Note - bad block marker can be on first or second page */ if (nand_read_oob(nand, page0 + badpos, 1, &retlen, (unsigned char *)&oob_data) || oob_data != 0xff || nand_read_oob (nand, page1 + badpos, 1, &retlen, (unsigned char *)&oob_data) || oob_data != 0xff) return 1; } return 0;}/* print bad blocks in NAND flash */void nand_print_bad(struct nand_chip* nand){ unsigned long pos; for (pos = 0; pos < nand->totlen; pos += nand->erasesize) { if (check_block(nand, pos)) printf(" 0x%8.8lx\n", pos); } puts("\n");}/* cmd: 0: NANDRW_WRITE write, fail on bad block * 1: NANDRW_READ read, fail on bad block * 2: NANDRW_WRITE | NANDRW_JFFS2 write, skip bad blocks * 3: NANDRW_READ | NANDRW_JFFS2 read, data all 0xff for bad blocks * 7: NANDRW_READ | NANDRW_JFFS2 | NANDRW_JFFS2_SKIP read, skip bad blocks */int nand_legacy_rw (struct nand_chip* nand, int cmd, size_t start, size_t len, size_t * retlen, u_char * buf){ int ret = 0, n, total = 0; char eccbuf[6]; /* eblk (once set) is the start of the erase block containing the * data being processed. */ unsigned long eblk = ~0; /* force mismatch on first pass */ unsigned long erasesize = nand->erasesize; while (len) { if ((start & (-erasesize)) != eblk) { /* have crossed into new erase block, deal with * it if it is sure marked bad. */ eblk = start & (-erasesize); /* start of block */ if (check_block(nand, eblk)) { if (cmd == (NANDRW_READ | NANDRW_JFFS2)) { while (len > 0 && start - eblk < erasesize) { *(buf++) = 0xff; ++start; ++total; --len; } continue; } else if (cmd == (NANDRW_READ | NANDRW_JFFS2 | NANDRW_JFFS2_SKIP)) { start += erasesize; continue; } else if (cmd == (NANDRW_WRITE | NANDRW_JFFS2)) { /* skip bad block */ start += erasesize; continue; } else { ret = 1; break; } } } /* The ECC will not be calculated correctly if less than 512 is written or read */ /* Is request at least 512 bytes AND it starts on a proper boundry */ if((start != ROUND_DOWN(start, 0x200)) || (len < 0x200)) printf("Warning block writes should be at least 512 bytes and start on a 512 byte boundry\n"); if (cmd & NANDRW_READ) { ret = nand_read_ecc(nand, start, min(len, eblk + erasesize - start), (size_t *)&n, (u_char*)buf, (u_char *)eccbuf); } else { ret = nand_write_ecc(nand, start, min(len, eblk + erasesize - start), (size_t *)&n, (u_char*)buf, (u_char *)eccbuf); } if (ret) break; start += n; buf += n; total += n; len -= n; } if (retlen) *retlen = total; return ret;}void nand_print(struct nand_chip *nand){ if (nand->numchips > 1) { printf("%s at 0x%lx,\n" "\t %d chips %s, size %d MB, \n" "\t total size %ld MB, sector size %ld kB\n", nand->name, nand->IO_ADDR, nand->numchips, nand->chips_name, 1 << (nand->chipshift - 20), nand->totlen >> 20, nand->erasesize >> 10); } else { printf("%s at 0x%lx (", nand->chips_name, nand->IO_ADDR); print_size(nand->totlen, ", "); print_size(nand->erasesize, " sector)\n"); }}/* ------------------------------------------------------------------------- */static int NanD_WaitReady(struct nand_chip *nand, int ale_wait){ /* This is inline, to optimise the common case, where it's ready instantly */ int ret = 0;#ifdef NAND_NO_RB /* in config file, shorter delays currently wrap accesses */ if(ale_wait) NAND_WAIT_READY(nand); /* do the worst case 25us wait */ else udelay(10);#else /* has functional r/b signal */ NAND_WAIT_READY(nand);#endif return ret;}/* NanD_Command: Send a flash command to the flash chip */static inline int NanD_Command(struct nand_chip *nand, unsigned char command){ unsigned long nandptr = nand->IO_ADDR; /* Assert the CLE (Command Latch Enable) line to the flash chip */ NAND_CTL_SETCLE(nandptr); /* Send the command */ WRITE_NAND_COMMAND(command, nandptr); /* Lower the CLE line */ NAND_CTL_CLRCLE(nandptr);#ifdef NAND_NO_RB if(command == NAND_CMD_RESET){ u_char ret_val; NanD_Command(nand, NAND_CMD_STATUS); do { ret_val = READ_NAND(nandptr);/* wait till ready */ } while((ret_val & 0x40) != 0x40); }#endif return NanD_WaitReady(nand, 0);}/* NanD_Address: Set the current address for the flash chip */static int NanD_Address(struct nand_chip *nand, int numbytes, unsigned long ofs){ unsigned long nandptr; int i; nandptr = nand->IO_ADDR; /* Assert the ALE (Address Latch Enable) line to the flash chip */ NAND_CTL_SETALE(nandptr); /* Send the address */ /* Devices with 256-byte page are addressed as: * Column (bits 0-7), Page (bits 8-15, 16-23, 24-31) * there is no device on the market with page256 * and more than 24 bits. * Devices with 512-byte page are addressed as: * Column (bits 0-7), Page (bits 9-16, 17-24, 25-31) * 25-31 is sent only if the chip support it. * bit 8 changes the read command to be sent * (NAND_CMD_READ0 or NAND_CMD_READ1). */ if (numbytes == ADDR_COLUMN || numbytes == ADDR_COLUMN_PAGE) WRITE_NAND_ADDRESS(ofs, nandptr); ofs = ofs >> nand->page_shift; if (numbytes == ADDR_PAGE || numbytes == ADDR_COLUMN_PAGE) { for (i = 0; i < nand->pageadrlen; i++, ofs = ofs >> 8) { WRITE_NAND_ADDRESS(ofs, nandptr); } } /* Lower the ALE line */ NAND_CTL_CLRALE(nandptr); /* Wait for the chip to respond */ return NanD_WaitReady(nand, 1);}/* NanD_SelectChip: Select a given flash chip within the current floor */static inline int NanD_SelectChip(struct nand_chip *nand, int chip){ /* Wait for it to be ready */ return NanD_WaitReady(nand, 0);}/* NanD_IdentChip: Identify a given NAND chip given {floor,chip} */static int NanD_IdentChip(struct nand_chip *nand, int floor, int chip){ int mfr, id, i; NAND_ENABLE_CE(nand); /* set pin low */ /* Reset the chip */ if (NanD_Command(nand, NAND_CMD_RESET)) {#ifdef NAND_DEBUG printf("NanD_Command (reset) for %d,%d returned true\n", floor, chip);#endif NAND_DISABLE_CE(nand); /* set pin high */ return 0; } /* Read the NAND chip ID: 1. Send ReadID command */ if (NanD_Command(nand, NAND_CMD_READID)) {#ifdef NAND_DEBUG printf("NanD_Command (ReadID) for %d,%d returned true\n", floor, chip);#endif NAND_DISABLE_CE(nand); /* set pin high */ return 0; } /* Read the NAND chip ID: 2. Send address byte zero */ NanD_Address(nand, ADDR_COLUMN, 0); /* Read the manufacturer and device id codes from the device */ mfr = READ_NAND(nand->IO_ADDR); id = READ_NAND(nand->IO_ADDR); NAND_DISABLE_CE(nand); /* set pin high */#ifdef NAND_DEBUG printf("NanD_Command (ReadID) got %x %x\n", mfr, id);#endif if (mfr == 0xff || mfr == 0) { /* No response - return failure */ return 0; } /* Check it's the same as the first chip we identified. * M-Systems say that any given nand_chip device should only * contain _one_ type of flash part, although that's not a * hardware restriction. */ if (nand->mfr) { if (nand->mfr == mfr && nand->id == id) { return 1; /* This is another the same the first */ } else { printf("Flash chip at floor %d, chip %d is different:\n", floor, chip); } } /* Print and store the manufacturer and ID codes. */ for (i = 0; nand_flash_ids[i].name != NULL; i++) { if (mfr == nand_flash_ids[i].manufacture_id && id == nand_flash_ids[i].model_id) {#ifdef NAND_DEBUG printf("Flash chip found:\n\t Manufacturer ID: 0x%2.2X, " "Chip ID: 0x%2.2X (%s)\n", mfr, id, nand_flash_ids[i].name);#endif if (!nand->mfr) { nand->mfr = mfr; nand->id = id; nand->chipshift = nand_flash_ids[i].chipshift; nand->page256 = nand_flash_ids[i].page256; nand->eccsize = 256; if (nand->page256) { nand->oobblock = 256; nand->oobsize = 8; nand->page_shift = 8; } else { nand->oobblock = 512; nand->oobsize = 16; nand->page_shift = 9; } nand->pageadrlen = nand_flash_ids[i].pageadrlen; nand->erasesize = nand_flash_ids[i].erasesize; nand->chips_name = nand_flash_ids[i].name; nand->bus16 = nand_flash_ids[i].bus16; return 1; } return 0; } }#ifdef NAND_DEBUG /* We haven't fully identified the chip. Print as much as we know. */ printf("Unknown flash chip found: %2.2X %2.2X\n", id, mfr);#endif return 0;}/* NanD_ScanChips: Find all NAND chips present in a nand_chip, and identify them */static void NanD_ScanChips(struct nand_chip *nand){ int floor, chip; int numchips[NAND_MAX_FLOORS]; int maxchips = NAND_MAX_CHIPS; int ret = 1; nand->numchips = 0; nand->mfr = 0; nand->id = 0; /* For each floor, find the number of valid chips it contains */ for (floor = 0; floor < NAND_MAX_FLOORS; floor++) { ret = 1; numchips[floor] = 0; for (chip = 0; chip < maxchips && ret != 0; chip++) { ret = NanD_IdentChip(nand, floor, chip); if (ret) { numchips[floor]++; nand->numchips++; } } } /* If there are none at all that we recognise, bail */ if (!nand->numchips) {#ifdef NAND_DEBUG puts ("No NAND flash chips recognised.\n");#endif return; } /* Allocate an array to hold the information for each chip */ nand->chips = malloc(sizeof(struct Nand) * nand->numchips); if (!nand->chips) { puts ("No memory for allocating chip info structures\n"); return; } ret = 0; /* Fill out the chip array with {floor, chipno} for each * detected chip in the device. */ for (floor = 0; floor < NAND_MAX_FLOORS; floor++) { for (chip = 0; chip < numchips[floor]; chip++) { nand->chips[ret].floor = floor; nand->chips[ret].chip = chip; nand->chips[ret].curadr = 0; nand->chips[ret].curmode = 0x50; ret++; } } /* Calculate and print the total size of the device */ nand->totlen = nand->numchips * (1 << nand->chipshift);#ifdef NAND_DEBUG printf("%d flash chips found. Total nand_chip size: %ld MB\n", nand->numchips, nand->totlen >> 20);#endif}/* we need to be fast here, 1 us per read translates to 1 second per meg */static void NanD_ReadBuf (struct nand_chip *nand, u_char * data_buf, int cntr){ unsigned long nandptr = nand->IO_ADDR; NanD_Command (nand, NAND_CMD_READ0); if (nand->bus16) { u16 val; while (cntr >= 16) {
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -