📄 tcp.c
字号:
/** * @file * Transmission Control Protocol for IP * * This file contains common functions for the TCP implementation, such as functinos * for manipulating the data structures and the TCP timer functions. TCP functions * related to input and output is found in tcp_in.c and tcp_out.c respectively. * *//* * Copyright (c) 2001-2004 Swedish Institute of Computer Science. * All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT * SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY * OF SUCH DAMAGE. * * This file is part of the lwIP TCP/IP stack. * * Author: Adam Dunkels <adam@sics.se> * */#include "lwip/opt.h"#if LWIP_TCP /* don't build if not configured for use in lwipopts.h */#include "lwip/def.h"#include "lwip/mem.h"#include "lwip/memp.h"#include "lwip/snmp.h"#include "lwip/tcp.h"#include "lwip/tcp_impl.h"#include "lwip/debug.h"#include "lwip/stats.h"#include <string.h>const char * const tcp_state_str[] = { "CLOSED", "LISTEN", "SYN_SENT", "SYN_RCVD", "ESTABLISHED", "FIN_WAIT_1", "FIN_WAIT_2", "CLOSE_WAIT", "CLOSING", "LAST_ACK", "TIME_WAIT" };/* Incremented every coarse grained timer shot (typically every 500 ms). */u32_t tcp_ticks;const u8_t tcp_backoff[13] = { 1, 2, 3, 4, 5, 6, 7, 7, 7, 7, 7, 7, 7}; /* Times per slowtmr hits */const u8_t tcp_persist_backoff[7] = { 3, 6, 12, 24, 48, 96, 120 };/* The TCP PCB lists. *//** List of all TCP PCBs bound but not yet (connected || listening) */struct tcp_pcb *tcp_bound_pcbs;/** List of all TCP PCBs in LISTEN state */union tcp_listen_pcbs_t tcp_listen_pcbs;/** List of all TCP PCBs that are in a state in which * they accept or send data. */struct tcp_pcb *tcp_active_pcbs;/** List of all TCP PCBs in TIME-WAIT state */struct tcp_pcb *tcp_tw_pcbs;#define NUM_TCP_PCB_LISTS 4#define NUM_TCP_PCB_LISTS_NO_TIME_WAIT 3/** An array with all (non-temporary) PCB lists, mainly used for smaller code size */struct tcp_pcb ** const tcp_pcb_lists[] = {&tcp_listen_pcbs.pcbs, &tcp_bound_pcbs, &tcp_active_pcbs, &tcp_tw_pcbs};/** Only used for temporary storage. */struct tcp_pcb *tcp_tmp_pcb;/** Timer counter to handle calling slow-timer from tcp_tmr() */ static u8_t tcp_timer;static u16_t tcp_new_port(void);/** * Called periodically to dispatch TCP timers. * */voidtcp_tmr(void){ /* Call tcp_fasttmr() every 250 ms */ tcp_fasttmr(); if (++tcp_timer & 1) { /* Call tcp_tmr() every 500 ms, i.e., every other timer tcp_tmr() is called. */ tcp_slowtmr(); }}/** * Closes the TX side of a connection held by the PCB. * For tcp_close(), a RST is sent if the application didn't receive all data * (tcp_recved() not called for all data passed to recv callback). * * Listening pcbs are freed and may not be referenced any more. * Connection pcbs are freed if not yet connected and may not be referenced * any more. If a connection is established (at least SYN received or in * a closing state), the connection is closed, and put in a closing state. * The pcb is then automatically freed in tcp_slowtmr(). It is therefore * unsafe to reference it. * * @param pcb the tcp_pcb to close * @return ERR_OK if connection has been closed * another err_t if closing failed and pcb is not freed */static err_ttcp_close_shutdown(struct tcp_pcb *pcb, u8_t rst_on_unacked_data){ err_t err; if (rst_on_unacked_data && (pcb->state != LISTEN)) { if ((pcb->refused_data != NULL) || (pcb->rcv_wnd != TCP_WND)) { /* Not all data received by application, send RST to tell the remote side about this. */ LWIP_ASSERT("pcb->flags & TF_RXCLOSED", pcb->flags & TF_RXCLOSED); /* don't call tcp_abort here: we must not deallocate the pcb since that might not be expected when calling tcp_close */ tcp_rst(pcb->snd_nxt, pcb->rcv_nxt, &pcb->local_ip, &pcb->remote_ip, pcb->local_port, pcb->remote_port); tcp_pcb_purge(pcb); /* TODO: to which state do we move now? */ /* move to TIME_WAIT since we close actively */ TCP_RMV(&tcp_active_pcbs, pcb); pcb->state = TIME_WAIT; TCP_REG(&tcp_tw_pcbs, pcb); return ERR_OK; } } switch (pcb->state) { case CLOSED: /* Closing a pcb in the CLOSED state might seem erroneous, * however, it is in this state once allocated and as yet unused * and the user needs some way to free it should the need arise. * Calling tcp_close() with a pcb that has already been closed, (i.e. twice) * or for a pcb that has been used and then entered the CLOSED state * is erroneous, but this should never happen as the pcb has in those cases * been freed, and so any remaining handles are bogus. */ err = ERR_OK; if (pcb->local_port != 0) { TCP_RMV(&tcp_bound_pcbs, pcb); } memp_free(MEMP_TCP_PCB, pcb); pcb = NULL; break; case LISTEN: err = ERR_OK; tcp_pcb_remove(&tcp_listen_pcbs.pcbs, pcb); memp_free(MEMP_TCP_PCB_LISTEN, pcb); pcb = NULL; break; case SYN_SENT: err = ERR_OK; tcp_pcb_remove(&tcp_active_pcbs, pcb); memp_free(MEMP_TCP_PCB, pcb); pcb = NULL; snmp_inc_tcpattemptfails(); break; case SYN_RCVD: err = tcp_send_fin(pcb); if (err == ERR_OK) { snmp_inc_tcpattemptfails(); pcb->state = FIN_WAIT_1; } break; case ESTABLISHED: err = tcp_send_fin(pcb); if (err == ERR_OK) { snmp_inc_tcpestabresets(); pcb->state = FIN_WAIT_1; } break; case CLOSE_WAIT: err = tcp_send_fin(pcb); if (err == ERR_OK) { snmp_inc_tcpestabresets(); pcb->state = LAST_ACK; } break; default: /* Has already been closed, do nothing. */ err = ERR_OK; pcb = NULL; break; } if (pcb != NULL && err == ERR_OK) { /* To ensure all data has been sent when tcp_close returns, we have to make sure tcp_output doesn't fail. Since we don't really have to ensure all data has been sent when tcp_close returns (unsent data is sent from tcp timer functions, also), we don't care for the return value of tcp_output for now. */ /* @todo: When implementing SO_LINGER, this must be changed somehow: If SOF_LINGER is set, the data should be sent and acked before close returns. This can only be valid for sequential APIs, not for the raw API. */ tcp_output(pcb); } return err;}/** * Closes the connection held by the PCB. * * Listening pcbs are freed and may not be referenced any more. * Connection pcbs are freed if not yet connected and may not be referenced * any more. If a connection is established (at least SYN received or in * a closing state), the connection is closed, and put in a closing state. * The pcb is then automatically freed in tcp_slowtmr(). It is therefore * unsafe to reference it (unless an error is returned). * * @param pcb the tcp_pcb to close * @return ERR_OK if connection has been closed * another err_t if closing failed and pcb is not freed */err_ttcp_close(struct tcp_pcb *pcb){#if TCP_DEBUG LWIP_DEBUGF(TCP_DEBUG, ("tcp_close: closing in ")); tcp_debug_print_state(pcb->state);#endif /* TCP_DEBUG */ if (pcb->state != LISTEN) { /* Set a flag not to receive any more data... */ pcb->flags |= TF_RXCLOSED; } /* ... and close */ return tcp_close_shutdown(pcb, 1);}/** * Causes all or part of a full-duplex connection of this PCB to be shut down. * This doesn't deallocate the PCB! * * @param pcb PCB to shutdown * @param shut_rx shut down receive side if this is != 0 * @param shut_tx shut down send side if this is != 0 * @return ERR_OK if shutdown succeeded (or the PCB has already been shut down) * another err_t on error. */err_ttcp_shutdown(struct tcp_pcb *pcb, int shut_rx, int shut_tx){ if (pcb->state == LISTEN) { return ERR_CONN; } if (shut_rx) { /* shut down the receive side: free buffered data... */ if (pcb->refused_data != NULL) { pbuf_free(pcb->refused_data); pcb->refused_data = NULL; } /* ... and set a flag not to receive any more data */ pcb->flags |= TF_RXCLOSED; } if (shut_tx) { /* This can't happen twice since if it succeeds, the pcb's state is changed. Only close in these states as the others directly deallocate the PCB */ switch (pcb->state) { case SYN_RCVD: case ESTABLISHED: case CLOSE_WAIT: return tcp_close_shutdown(pcb, 0); default: /* don't shut down other states */ break; } } /* @todo: return another err_t if not in correct state or already shut? */ return ERR_OK;}/** * Abandons a connection and optionally sends a RST to the remote * host. Deletes the local protocol control block. This is done when * a connection is killed because of shortage of memory. * * @param pcb the tcp_pcb to abort * @param reset boolean to indicate whether a reset should be sent */voidtcp_abandon(struct tcp_pcb *pcb, int reset){ u32_t seqno, ackno; u16_t remote_port, local_port; ip_addr_t remote_ip, local_ip;#if LWIP_CALLBACK_API tcp_err_fn errf;#endif /* LWIP_CALLBACK_API */ void *errf_arg; /* pcb->state LISTEN not allowed here */ LWIP_ASSERT("don't call tcp_abort/tcp_abandon for listen-pcbs", pcb->state != LISTEN); /* Figure out on which TCP PCB list we are, and remove us. If we are in an active state, call the receive function associated with the PCB with a NULL argument, and send an RST to the remote end. */ if (pcb->state == TIME_WAIT) { tcp_pcb_remove(&tcp_tw_pcbs, pcb); memp_free(MEMP_TCP_PCB, pcb); } else { seqno = pcb->snd_nxt; ackno = pcb->rcv_nxt; ip_addr_copy(local_ip, pcb->local_ip); ip_addr_copy(remote_ip, pcb->remote_ip); local_port = pcb->local_port; remote_port = pcb->remote_port;#if LWIP_CALLBACK_API errf = pcb->errf;#endif /* LWIP_CALLBACK_API */ errf_arg = pcb->callback_arg; tcp_pcb_remove(&tcp_active_pcbs, pcb); if (pcb->unacked != NULL) { tcp_segs_free(pcb->unacked); } if (pcb->unsent != NULL) { tcp_segs_free(pcb->unsent); }#if TCP_QUEUE_OOSEQ if (pcb->ooseq != NULL) { tcp_segs_free(pcb->ooseq); }#endif /* TCP_QUEUE_OOSEQ */ memp_free(MEMP_TCP_PCB, pcb); TCP_EVENT_ERR(errf, errf_arg, ERR_ABRT); if (reset) { LWIP_DEBUGF(TCP_RST_DEBUG, ("tcp_abandon: sending RST\n")); tcp_rst(seqno, ackno, &local_ip, &remote_ip, local_port, remote_port); } }}/** * Aborts the connection by sending a RST (reset) segment to the remote * host. The pcb is deallocated. This function never fails. * * ATTENTION: When calling this from one of the TCP callbacks, make * sure you always return ERR_ABRT (and never return ERR_ABRT otherwise * or you will risk accessing deallocated memory or memory leaks! * * @param pcb the tcp pcb to abort */voidtcp_abort(struct tcp_pcb *pcb){ tcp_abandon(pcb, 1);}/** * Binds the connection to a local portnumber and IP address. If the * IP address is not given (i.e., ipaddr == NULL), the IP address of * the outgoing network interface is used instead. * * @param pcb the tcp_pcb to bind (no check is done whether this pcb is * already bound!) * @param ipaddr the local ip address to bind to (use IP_ADDR_ANY to bind * to any local address * @param port the local port to bind to * @return ERR_USE if the port is already in use * ERR_VAL if bind failed because the PCB is not in a valid state * ERR_OK if bound */err_ttcp_bind(struct tcp_pcb *pcb, ip_addr_t *ipaddr, u16_t port){ int i; int max_pcb_list = NUM_TCP_PCB_LISTS; struct tcp_pcb *cpcb; LWIP_ERROR("tcp_bind: can only bind in state CLOSED", pcb->state == CLOSED, return ERR_VAL);#if SO_REUSE /* Unless the REUSEADDR flag is set,
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -