📄 simp.c
字号:
zerofield(EQ,I,i); break; case ADD+P: foldaddp(l,r,I,i); foldaddp(l,r,U,u); foldaddp(r,l,I,i); foldaddp(r,l,U,u); commute(r,l); identity(r,retype(l,ty),I,i,0); identity(r,retype(l,ty),U,u,0); /* Some assemblers, e.g., the MIPS, can't handle offsets larger than 16 bits. A better solution would be to change the interface so that address() could fail. */ if (l->op == ADDRG+P && l->u.sym->generated && (r->op == CNST+I && (r->u.v.i > 32767 || r->u.v.i < -32768) || r->op == CNST+U && r->u.v.u > 65536)) break; if (IR->address && isaddrop(l->op) && (r->op == CNST+I && r->u.v.i <= longtype->u.sym->u.limits.max.i && r->u.v.i >= longtype->u.sym->u.limits.min.i || r->op == CNST+U && r->u.v.u <= longtype->u.sym->u.limits.max.i)) return addrtree(l, cast(r, longtype)->u.v.i, ty); if (IR->address && l->op == ADD+P && isaddrop(l->kids[1]->op) && (r->op == CNST+I && r->u.v.i <= longtype->u.sym->u.limits.max.i && r->u.v.i >= longtype->u.sym->u.limits.min.i || r->op == CNST+U && r->u.v.u <= longtype->u.sym->u.limits.max.i)) return simplify(ADD+P, ty, l->kids[0], addrtree(l->kids[1], cast(r, longtype)->u.v.i, ty)); if ((l->op == ADD+I || l->op == SUB+I) && l->kids[1]->op == CNST+I && isaddrop(r->op)) return simplify(ADD+P, ty, l->kids[0], simplify(generic(l->op)+P, ty, r, l->kids[1])); if (l->op == ADD+P && generic(l->kids[1]->op) == CNST && generic(r->op) == CNST) return simplify(ADD+P, ty, l->kids[0], simplify(ADD, l->kids[1]->type, l->kids[1], r)); if (l->op == ADD+I && generic(l->kids[1]->op) == CNST && r->op == ADD+P && generic(r->kids[1]->op) == CNST) return simplify(ADD+P, ty, l->kids[0], simplify(ADD+P, ty, r->kids[0], simplify(ADD, r->kids[1]->type, l->kids[1], r->kids[1]))); if (l->op == RIGHT && l->kids[1]) return tree(RIGHT, ty, l->kids[0], simplify(ADD+P, ty, l->kids[1], r)); else if (l->op == RIGHT && l->kids[0]) return tree(RIGHT, ty, simplify(ADD+P, ty, l->kids[0], r), NULL); break; case ADD+F: xfoldcnst(F,d,+,addd); commute(r,l); break; case AND+I: op = AND; ufoldcnst(I,l->u.v.i ? cond(r) : l); /* 0&&r => 0, 1&&r => r */ break; case OR+I: op = OR; /* 0||r => r, 1||r => 1 */ ufoldcnst(I,l->u.v.i ? cnsttree(ty, 1L) : cond(r)); break; case BCOM+I: ufoldcnst(I,cnsttree(ty, (long)extend((~l->u.v.i)&ones(8*ty->size), ty))); idempotent(BCOM+U); break; case BCOM+U: ufoldcnst(U,cnsttree(ty, (unsigned long)((~l->u.v.u)&ones(8*ty->size)))); idempotent(BCOM+U); break; case BOR+U: foldcnst(U,u,|); commute(r,l); identity(r,l,U,u,0); break; case BOR+I: foldcnst(I,i,|); commute(r,l); identity(r,l,I,i,0); break; case BXOR+U: foldcnst(U,u,^); commute(r,l); identity(r,l,U,u,0); break; case BXOR+I: foldcnst(I,i,^); commute(r,l); identity(r,l,I,i,0); break; case DIV+F: xfoldcnst(F,d,/,divd); break; case DIV+I: identity(r,l,I,i,1); if (r->op == CNST+I && r->u.v.i == 0 || l->op == CNST+I && l->u.v.i == ty->u.sym->u.limits.min.i && r->op == CNST+I && r->u.v.i == -1) break; xfoldcnst(I,i,/,divi); break; case DIV+U: identity(r,l,U,u,1); if (r->op == CNST+U && r->u.v.u == 0) break; if (r->op == CNST+U && (n = ispow2(r->u.v.u)) != 0) return simplify(RSH, ty, l, cnsttree(inttype, (long)n)); foldcnst(U,u,/); break; case EQ+F: cfoldcnst(F,d,==); commute(r,l); break; case EQ+U: cfoldcnst(U,u,==); commute(r,l); zerofield(EQ,U,u); break; case GE+F: cfoldcnst(F,d,>=); break; case GE+I: cfoldcnst(I,i,>=); break; case GE+U: geu(l,r,1); /* l >= 0 => (l,1) */ cfoldcnst(U,u,>=); if (l->op == CNST+U && l->u.v.u == 0) /* 0 >= r => r == 0 */ return eqtree(EQ, r, l); break; case GT+F: cfoldcnst(F,d, >); break; case GT+I: cfoldcnst(I,i, >); break; case GT+U: geu(r,l,0); /* 0 > r => (r,0) */ cfoldcnst(U,u, >); if (r->op == CNST+U && r->u.v.u == 0) /* l > 0 => l != 0 */ return eqtree(NE, l, r); break; case LE+F: cfoldcnst(F,d,<=); break; case LE+I: cfoldcnst(I,i,<=); break; case LE+U: geu(r,l,1); /* 0 <= r => (r,1) */ cfoldcnst(U,u,<=); if (r->op == CNST+U && r->u.v.u == 0) /* l <= 0 => l == 0 */ return eqtree(EQ, l, r); break; case LSH+I: identity(r,l,I,i,0); if (l->op == CNST+I && r->op == CNST+I && r->u.v.i >= 0 && r->u.v.i < 8*l->type->size && muli(l->u.v.i, 1<<r->u.v.i, ty->u.sym->u.limits.min.i, ty->u.sym->u.limits.max.i, needconst)) return cnsttree(ty, (long)(l->u.v.i<<r->u.v.i)); if (r->op == CNST+I && (r->u.v.i >= 8*ty->size || r->u.v.i < 0)) { warning("shifting an `%t' by %d bits is undefined\n", ty, r->u.v.i); break; } break; case LSH+U: identity(r,l,I,i,0); sfoldcnst(<<); if (r->op == CNST+I && (r->u.v.i >= 8*ty->size || r->u.v.i < 0)) { warning("shifting an `%t' by %d bits is undefined\n", ty, r->u.v.i); break; } break; case LT+F: cfoldcnst(F,d, <); break; case LT+I: cfoldcnst(I,i, <); break; case LT+U: geu(l,r,0); /* l < 0 => (l,0) */ cfoldcnst(U,u, <); if (l->op == CNST+U && l->u.v.u == 0) /* 0 < r => r != 0 */ return eqtree(NE, r, l); break; case MOD+I: if (r->op == CNST+I && r->u.v.i == 0 || l->op == CNST+I && l->u.v.i == ty->u.sym->u.limits.min.i && r->op == CNST+I && r->u.v.i == -1) break; xfoldcnst(I,i,%,divi); if (r->op == CNST+I && r->u.v.i == 1) /* l%1 => (l,0) */ return tree(RIGHT, ty, root(l), cnsttree(ty, 0L)); break; case MOD+U: if (r->op == CNST+U && ispow2(r->u.v.u)) /* l%2^n => l&(2^n-1) */ return bittree(BAND, l, cnsttree(ty, r->u.v.u - 1)); if (r->op == CNST+U && r->u.v.u == 0) break; foldcnst(U,u,%); break; case MUL+F: xfoldcnst(F,d,*,muld); commute(l,r); break; case MUL+I: commute(l,r); xfoldcnst(I,i,*,muli); if (l->op == CNST+I && r->op == ADD+I && r->kids[1]->op == CNST+I) /* c1*(x + c2) => c1*x + c1*c2 */ return simplify(ADD, ty, simplify(MUL, ty, l, r->kids[0]), simplify(MUL, ty, l, r->kids[1])); if (l->op == CNST+I && r->op == SUB+I && r->kids[1]->op == CNST+I) /* c1*(x - c2) => c1*x - c1*c2 */ return simplify(SUB, ty, simplify(MUL, ty, l, r->kids[0]), simplify(MUL, ty, l, r->kids[1])); if (l->op == CNST+I && l->u.v.i > 0 && (n = ispow2(l->u.v.i)) != 0) /* 2^n * r => r<<n */ return simplify(LSH, ty, r, cnsttree(inttype, (long)n)); identity(r,l,I,i,1); break; case NE+F: cfoldcnst(F,d,!=); commute(r,l); break; case NE+U: cfoldcnst(U,u,!=); commute(r,l); zerofield(NE,U,u); break; case NEG+F: ufoldcnst(F,cnsttree(ty, -l->u.v.d)); idempotent(NEG+F); break; case NEG+I: if (l->op == CNST+I) { if (needconst && l->u.v.i == ty->u.sym->u.limits.min.i) warning("overflow in constant expression\n"); if (needconst || l->u.v.i != ty->u.sym->u.limits.min.i) return cnsttree(ty, -l->u.v.i); } idempotent(NEG+I); break; case NOT+I: op = NOT; ufoldcnst(I,cnsttree(ty, !l->u.v.i)); break; case RSH+I: identity(r,l,I,i,0); if (l->op == CNST+I && r->op == CNST+I && r->u.v.i >= 0 && r->u.v.i < 8*l->type->size) { long n = l->u.v.i>>r->u.v.i; if (l->u.v.i < 0) n |= ~0UL<<(8*l->type->size - r->u.v.i); return cnsttree(ty, n); } if (r->op == CNST+I && (r->u.v.i >= 8*ty->size || r->u.v.i < 0)) { warning("shifting an `%t' by %d bits is undefined\n", ty, r->u.v.i); break; } break; case RSH+U: identity(r,l,I,i,0); sfoldcnst(>>); if (r->op == CNST+I && (r->u.v.i >= 8*ty->size || r->u.v.i < 0)) { warning("shifting an `%t' by %d bits is undefined\n", ty, r->u.v.i); break; } break; case SUB+F: xfoldcnst(F,d,-,subd); break; case SUB+I: xfoldcnst(I,i,-,subi); identity(r,l,I,i,0); break; case SUB+U: foldcnst(U,u,-); identity(r,l,U,u,0); break; case SUB+P: if (l->op == CNST+P && r->op == CNST+P) return cnsttree(ty, (long)((char *)l->u.v.p - (char *)r->u.v.p)); if (r->op == CNST+I || r->op == CNST+U) return simplify(ADD, ty, l, cnsttree(inttype, r->op == CNST+I ? -r->u.v.i : -(long)r->u.v.u)); if (isaddrop(l->op) && r->op == ADD+I && r->kids[1]->op == CNST+I) /* l - (x + c) => l-c - x */ return simplify(SUB, ty, simplify(SUB, ty, l, r->kids[1]), r->kids[0]); break; default:assert(0); } return tree(op, ty, l, r);}/* ispow2 - if u > 1 && u == 2^n, return n, otherwise return 0 */int ispow2(unsigned long u) { int n; if (u > 1 && (u&(u-1)) == 0) for (n = 0; u; u >>= 1, n++) if (u&1) return n; return 0;}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -