📄 rfc2330.txt
字号:
对于一给定的定义明确的度量参数集合,可能存在许多截然不同的测量方法。一个
局部的列表包括:
采用注入测试流量的方法来直接测量一个性能度量参数。例如:对给定时间,给定路由,
给定长度的IP分组的往返延迟的测量。
从低级别层的测量中来预测一个度量参数。如:给出传播延迟和延一路径的每一步的带
宽的准确测量,预测给定长度的IP分组在路径上的全部延迟。
从一个更聚合的测量中估计其组成之一的度量参数。如:给出一给定一跳路径对不同长
度IP分组延迟的准确测量,估计这个一跳路径上的链路的传播延迟。
从一组相关的其它时间的度量值来估计在某时的测量值。如:给出过去时间的流量容量
的准确测量和过去时间及现在准确测量的延迟,以及给定流量动态的模型,估计在当前时间
将看到的流量容量。
这个列表绝不是毫无遗漏的,它的目的是指出测量技术多样性。
当一个度量参数明确后,一个给定的测量方法必须提出并讨论。然而,这个测量方法并
不是规范说明中的正式部分。
一个度量参数的测量方法应该有可重复性:如果在相同的条件下多次使用该测量方法,
得到的结果应当是一致的。
从前一段提到的“相同条件”后退一点点,我们可以用更准确的词——“连贯性”来描
叙给定测量方法的属性:一个度量参数的测量方法显示出连贯性,如果条件的变化很小,得
到的测量结果的变化也很小。稍微精密一点说,对每一个正的ε,存在一个正的δ,因此如果
两组条件在彼此的δ之内,那么测量结果将在彼此的ε之内。在这里,这应被视为是关于一
种健壮性的启发式的直觉而不是精确的观念。
至少有一种测量方法显示出连贯性的度量参数就说它自身有连贯性。
注意,有些度量参数,如沿路径的跳数,其值是整数所以不能完全显示出上述意义的连
贯性。
此外要注意,实践中,想知道(或能数量化)与特定时间测量相关的条件可能是不实际
的。例如:因为高速广域网中给定路由器的即时负载(被服务的分组)在相对简短的时期内
能相差很大地变化且对一个外部的观察者来说确定其数量会非常困难,特定度量参数的不同
的统计量可能更有可重复性,或者较好的显示连贯性。这时,当度量参数明确说明了时那些
特定的统计量也应该明确说明。
最后,有些测量行为不修改,或只是轻微地修改测量方法试图测量的性能参数的值;在
这个意义下,这些方法可能是“保守”的。{注释:例如,在适度负载的高速广域网内,使用
几个小的“ping”分组来测量延时的测量方法似乎不会影响(影响很大)被其他人观测到的
网络的延迟属性。相应的,使用大的流量来测量流量容量的方法似乎会失败。}
6.3.测量,不确定性,错误
即使是给表现最为明显的度量参数使用的最好的测量方法也会产生错误。然而,那
些开发出这些测量方法的人应该努力争取:
使他们的不确定性/错误最小,
理解并证明不确定性/错误的来源,还要
确定不确定性/错误的数量。
例如,在开发测量延迟的方法是,理解你的系统时钟的任何错误是怎样将错误引入
你的延迟测量中来的,并尽你所能的将这种影响数值化。在一些情况下,这会导致一个
必要条件:如果系统时钟要用于做某种测量,它的质量至少要高于某个标准。
作为第二个例子,考虑计算机在做测量时由于测量的额外开销引起的计时错误,与
互联网被测组件的延迟相反。前者是一个测量错误,而后者反映了互联网的度量参数。
注意,一种有助于避免这种额外开销的技术是使用分组过滤器/嗅探器,在一台分离的准
确地记录分组和时间戳的计算机上运行。(见下面“线时”的讨论。)然后记录的结果可
用于分析以评价测试流量,使测量主机的延迟影响最小,或者至少使这些延迟能得到说
明。我们注意到,即使过滤器/嗅探器在同一台机器上运行,这种技术也证明是有益的,
因为这种测量通常提供的是“内核级”时间戳,而不是精确度差点的“应用级”时间戳。
最后,我们注意到原始度量参数(derived metrics ,如上定义)或有时间或空间合
成的度量参数(定义如下)为测量的不确定性的分析提供了特定的场合。即不确定性怎
样因为原始的或合成的参数而传播(概念上的)。
7.度量参数和分析框架
在互联网从二十世纪六十年代早期的分组交换研究中发展时,互联网工程界开发了一个
概念的普遍的分析框架。这个分析框架,或A-frame,为协议的设计者和实现者、与测量有
关的人、用仿真和分析工具研究计算机网络性能的人所用,对我们的工作有极大的好处。这
里一个主要的目标是产生在分析和实践的设置里都一致的网络特征,因为这会使非经验式的
网络研究能更好的与实际网络行为一致,并更好的用来促进我们对实际网络行为的理解这两
个机会最大化。
因此,无论何时,只要可能我们就应发展和借用(leverage off)A-frame。这样,无论何
时只要一个被明确说明的度量参数我们理解是与A-frame内的概念紧密相关的,我们就要试
着用A-frame的术语来明确说明这个度量参数。在这样的规范里,我们将通过恰当的定义度
量参数所需的概念来发展A-frame,然后通过根据这些概念定义度量参数来借用A-frame。
这样的参数将被称为“分析确定度量参数(analytically specified metric)”,或者,更简单
一点,分析度量参数(analytical metric)。
{注释:这样的分析度量参数的例子有:
链路传播时间:
以秒计的,一个位从一个互联网主机的输出端口通过单一的链路传输到另一互联网主机
所需的时间。
分组长k时的链路带宽:
.以位每秒(bps)计的,只计数分组长k字节的IP分组时的容量。
路由:如第五节定义的,给定时间从A到B的路径。
路由跳数:路由路径的“n”值。}
注意,我们并没有给出一个什么A-frame概念会在规范里显现的优先的表格,但是我们
鼓励他们的使用并要求仔细地明确说明他们;以至在我们的度量参数集开发时明确说明的
A-frame概念集技术上也会彼此一致,也与在一般互联网界对这些概念的普遍理解一致。
这些A-frame概念将试着以这样一种方法从实际互联网组件中抽象出来:
组件的基本功能保留,
组件与我们想创建的度量参数有关的属性保留,
这些组件属性的子集被潜在地定义为分析度量参数,且
实际互联网组件与我们想创建的度量参数不相关的那些属性被丢弃。
例如,当在分组转发的背景下考虑路由器时,我们可以把路由器抽象成这样一个组件模
型:它从输入链路接受分组,将它们在长度有限的先进先出(FIFO)的分组队列中排队,当
分组队列满了是采用尾部丢弃,将分组转发到输出链路。输入和输出链路的传输速度(位/
秒),路由器的延迟(秒),和分组队列的最大长度(位)是相关的分析度量参数。
在某些情况里,这样的涉及路由器的分析度量参数会与互联网路径性能的特定度量参数
非常紧密地相关。例如,一个显而易见的包括路由器延迟(L),分组长度(P,以位计),和
输出链路的传输速度(B)的公式(L + P/B)可能与因为沿路径插入特定路由器引起的分组延
迟的增长紧密接近。
然而,我们强调,适当的定义恰当的A-frame概念及它们的分析度量参数要以不太明显
的方式支持建立更一般的参数的努力。
{注释:例如,当考虑路径的流量容量时,能够将沿着路径的路由器转化为上述的分组转
发器是有实际价值的。估计路径流量容量的技术可能断然地以不显然的方式将最大分组队列
长度做为一个参数。例如,随着最大分组队列长度增长,尽管输入链路的流量有起伏,路由
器持续地转发流量至输出链路的能力也会增加。然而,估计这个增加量还是一个在研究的问
题。}
注意,在我们明确说明A-frame概念和分析度量参数时,我们将不可避免的作出简化的
假定。这些概念的关键任务是抽象出互联网组件与给定度量参数相关的属性。为避免作出使
模型和度量努力偏向某个设计的假定,需要判断。
{注释:例如,路由器可能不使用尾部丢弃(tail-drop),即使对模型分析来说尾部丢弃可
能更容易。}
最后,注意A-frame不同的元素可较好地作出不同的简化假设。例如,促进路径延迟定
义而用的路由器抽象可能将路由器的分组队列看成一个简单的先进先出队列,但是促进资源
可预留分组(RSVP-enabled packet)处理定义而用的路由器抽象可能将路由器的分组队列看
成一个相反的假定——支持跃进延迟(supporting bounded delay)。这并不是说我们同时作了
相矛盾的假定,而是出于不同的目的,我们工作的两个不同部分可以两种有分歧的方式来改
进更简单的基本概念。
{注释:用更数学化的话说,A-frame 作为一个整体不需要一致,但用于定义特定度量参
数的A-frame 特定元素集合必须一致。}
8.由经验明确说明的度量参数
通常因为A-frame 缺少处理它们的细节和能力,存在不完全符合A-frame 的有用的
性能和可靠性度量参数。例如,“沿路径使用遵从RFC2001-TCP可得的最大流量容量”
会比较好测量,但是我们没有足够丰富的分析框架来允许我们将这个流量容量当一个分
析度量参数对待。
这些概念仍可通过描叙一个测量它们的参考方法来很好的说明。
这样的度量参数可被称为“经验说明度量参数”,或者更简单,经验度量参数。
这样的经验度量参数应具有三个属性:
对每一个参数,我们应有根据互联网组件而来的清楚地定义。
至少应该有一种有效的方法来测量它们。
为了可能的扩展,我们应对这种参数有根据A-frame 的理解(这种理解必然是不完全
的),以此我们可以用我们的测量来思考A-frame 组件和A-frame 组件集合的性能和可靠性。
9. 合成的两种形式
9.1.度量参数的空间合成
某些场合下,以一种显示出空间合成的方式来定义度量参数可能是现实的也是有用
的。
使用空间合成,我们意指一些路径度量参数的特征,这里应用于一(完整的)路径
的度量参数也能用于定义不同的子路径;而且,该参数所用的适当的A-frame 概念暗示
了在用于这些不同子路径的参数之间的有用的关系(包括完整路径,给定分类路径的不
同的云子路径,甚至沿路径的单个路由器)。空间合成的有效性依赖于:
在应用于相关的A-frame组件时这些关系在分析中的有用性,
在应用于度量参数和测量方法时相应关系的实际使用。
{注释:例如,考虑沿路径P,100字节长分组的延迟的一些度量参数,并考虑路径P的
分类路径<h0, e1,C1, ..., en, hn>。这样一个度量参数的定义里可能包含了这样的猜想:通过P
的延迟非常接近通过给定分类路径交换链路(ei)和云(Ci)的相应的度量参数之和。这个定义也
会包含相应关系是怎样用于对路径P和对分类路径的交换链路、云的相关的A-frame组件的
注解。}
当一个度量参数的定义包含了通过路径的参数与通过该路径的子路径的参数有关的猜想
时,这个猜想规定了该参数显示了空间合成性。那么,定义里就应包括:
用于该度量参数的明确的猜想,
在对路径上该参数的准确测量方面,这个合成在实践中有用的理由,
在更有效的使用A-frame概念对路径作出分析方面,这个合成的有用性的理由,
对这个猜想怎样会不正确的分析。
9.2.正式模型和经验度量参数的时间合成
某些场合下,,以一种显示出时间合成的方式来定义度量参数可能是现实的也是有用
的。
使用时间合成,我们意指一些路径度量参数的特征,这里应用于在给定时间T时路
径的度量参数也能用于定义不同的时间t0 < t1 < ... < tn < T时的路径,而且,该参数所用
的适当的A-frame 概念暗示了在用于时间t0, ..., tn和时间T的参数之间的有用的关系。
空间合成的有效性依赖于:
在应用于相关的A-frame组件时这些关系在分析中的有用性,
在应用于度量参数和测量方法时相应关系的实际使用。
{注释:例如,考虑时间T内的5分钟长的时间通过路径P的预期的流量容量的度
量参数 ,并假定我们获得了之前的4个5分钟长的时间t0, t1, t2, 和t3的相应值。这样
一个度量参数的定义里可能包含了这样的猜想:在时间T的流量容量能从t0, ..., t3的值
的某种推断中估计出来。这个定义也会包含相应关系是怎样用于相关的A-frame组件的
注解。
注意:涉及流量容量的任何合成(时间或空间的)似乎很微妙,而且时间合成一般
要比空间合成更微妙,所以读者应理解下面的例子是有意地考虑不周。}
当一个度量参数的定义包含了在给定时间T通过路径的参数与在一组其它时间通过
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -