⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 galib screen shots.htm

📁 提供了遗传算法的一些代码库文件
💻 HTM
字号:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<!-- saved from url=(0041)http://lancet.mit.edu/ga/ScreenShots.html -->
<HTML><HEAD><TITLE>GAlib: Screen Shots</TITLE>
<META http-equiv=Content-Type content="text/html; charset=gb2312"><!-- Copyright (c) 1995 Massachusetts Institute of Technology --><!--                    all rights reserved                   -->
<META content="MSHTML 6.00.2900.2769" name=GENERATOR></HEAD>
<BODY text=#000000 bgColor=#ffffff><STRONG><A 
href="http://lancet.mit.edu/ga/">GAlib</A> Screen Shots</STRONG><BR>
<P>Here are some sample screen shots of GAlib examples and of programs derived 
from GAlib examples. </P>
<TABLE cellSpacing=5 cellPadding=5 border=0>
  <TBODY>
  <TR vAlign=top>
    <TD><IMG height=239 alt=ripples src="GAlib Screen Shots.files/ripples.gif" 
      width=338></TD>
    <TD><I>Maximize a continuous function in two variables. The function looks 
      like ripples in a pond when drawn in three dimensions. The maximum value 
      is located at the center of the ripples. The example included with GAlib 
      shows this problem in two dimensions - the three dimensional example is a 
      slight modification to the GAlib example using an OpenGL widget rather 
      than a 2-D X drawing area. </I></TD></TR>
  <TR vAlign=top>
    <TD><A href="http://lancet.mit.edu/ga/images/gaview-win-657x719.gif"><IMG 
      height=360 alt=rings src="GAlib Screen Shots.files/gaview-win-329x360.gif" 
      width=329></A></TD>
    <TD><I>Maximize a continuous function in two variables. Same as the 
      previous example, but this one is plotted in two dimensions in a simple 
      application built with visual c++. This version of the program lets you 
      change crossover, mutation, representation, algorithm, and parameters on 
      the fly. </I></TD></TR>
  <TR vAlign=top>
    <TD><IMG height=239 alt=tours src="GAlib Screen Shots.files/tours.gif" 
      width=338></TD>
    <TD><I>This program uses a genome derived from the GAListGenome class and 
      solves a simple case of the travelling salesman problem. The image shows a 
      population of solutions, with the best solutions at the bottom left of the 
      window. Note that there are more than one optimal solution, and that the 
      deterministic crowding genetic algorithm has found more than one of these 
      solutions. </I></TD></TR>
  <TR vAlign=top>
    <TD><A href="http://lancet.mit.edu/ga/images/tspview-win-549x410.gif"><IMG 
      height=246 alt=tours 
      src="GAlib Screen Shots.files/tspview-win-329x246.gif" width=329></A></TD>
    <TD><I>A windows version of the traveling salesperson problem. In this 
      demo you may select the type of evolution and quickly see the impact that 
      has on the quality and number of solutions found. </I></TD></TR>
  <TR vAlign=top>
    <TD><IMG height=239 alt=gantt src="GAlib Screen Shots.files/gantt.gif" 
      width=338></TD>
    <TD><I>This program solves a class of resource-constrained scheduling 
      problems. It uses its own custom genome that is described in the doctoral 
      thesis of Matthew Wall at <CODE><A 
      href="http://lancet.mit.edu/~mbwall/phd">http://lancet.mit.edu/~mbwall/phd</A></CODE> 
      </I></TD></TR></TBODY></TABLE></BODY></HTML>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -