📄 nnoe.m
字号:
function [W1,W2,PI_vector,iteration,lambda]=nnoe(NetDef,NN,W1,W2,trparms,Y,U)
% NNOE
% ----
% Determine a nonlinear output error model of a dynamic system
% by training a two layer neural network with the Marquardt method.
%
% yhat(t)=f(yhat(t-1),...,yhat(t-na),u(t-nk),...u(t-nk-nb+1))
% The function can handle multi-input systems (MISO).
%
% CALL:
% [W1,W2,critvec,iteration,lambda]=nnoe(NetDef,NN,W1,W2,trparms,Y,U)
%
% INPUTS:
% U : Input signal (= control signal).
% dim(U) = [(inputs) * (# of data)]
% Y : Output signal. dim(Y) = [1 * # of data]
% NN : NN=[na nb nk]
% na = # of past outputs used for determining prediction
% nb = # of past inputs used for determining prediction
% nk = time delay (usually 1)
% For multi-input systems nb and nk contain as many columns as
% there are inputs.
% W1,W2 : Input-to-hidden layer and hidden-to-output layer weights.
% If they are passed as [] they are initialized automatically
% trparms: Data structure with parameters associated with the
% training algorithm (optional). Use the function SETTRAIN if
% you do not want to use the default values.
%
% See the function MARQ for an explanation of the remaining input arguments
% as well as of the returned variables.
% Programmed by : Magnus Norgaard, IAU/IMM, technical University of Denmark
% LastEditDate : June 1, 2001
%----------------------------------------------------------------------------------
%-------------- NETWORK INITIALIZATIONS -------------
%----------------------------------------------------------------------------------
Ndat = length(Y); % # of data
na = NN(1); % Order of polynomials
[nu,Ndat]= size(U);
nb = NN(2:1+nu);
nk = NN(1+nu+1:1+2*nu);
nmax = max([na nb+nk-1]); % Oldest signal used as input to the model
N = Ndat - nmax; % Size of training set
nab = na+sum(nb); % na+nb
hidden = length(NetDef(1,:)); % Number of hidden neurons
inputs = nab; % Number of inputs to the network
outputs = 1; % Only one output
L_hidden = find(NetDef(1,:)=='L')'; % Location of linear hidden neurons
H_hidden = find(NetDef(1,:)=='H')'; % Location of tanh hidden neurons
L_output = find(NetDef(2,:)=='L')'; % Location of linear output neurons
H_output = find(NetDef(2,:)=='H')'; % Location of tanh output neurons
y1 = zeros(hidden,N); % Hidden layer outputs
y1 = [y1;ones(1,N)];
y2 = zeros(outputs,N); % Network output
E = zeros(outputs,N); % Initialize prediction error vector
E_new = zeros(outputs,N); % Initialize prediction error vector
index = outputs*(hidden+1) + 1 + [0:hidden-1]*(inputs+1); % A useful vector!
index2 = (0:N-1)*outputs; % Yet another useful vector
iteration= 1; % Counter variable
dw = 1; % Flag telling that the weights are new
parameters1= hidden*(inputs+1); % # of input-to-hidden weights
parameters2= outputs*(hidden+1); % # of hidden-to-output weights
parameters=parameters1 + parameters2; % Total # of weights
ones_h = ones(hidden+1,1); % A vector of ones
ones_i = ones(inputs+1,1); % Another vector of ones
if isempty(W1) | isempty(W2), % Initialize weights if nescessary
trparmsi = settrain;
trparmsi = settrain(trparmsi,'maxiter',100);
[W1,W2]=nnarx(NetDef,[na nb nk],[],[],trparmsi,Y,U);
end
% Parameter vector containing all weights
theta = [reshape(W2',parameters2,1) ; reshape(W1',parameters1,1)];
theta_index = find(theta); % Index to weights<>0
theta_red = theta(theta_index); % Reduced parameter vector
reduced = length(theta_index); % The # of parameters in theta_red
index3 = 1:(reduced+1):(reduced^2); % A third useful vector
dy2dy = zeros(na,N); % Der. of output wrt. the past outputs
dy1dy = zeros(hidden,na); % Der. of hidden unit outp. wrt. past outputs
index4 = 1:na; % And a fourth
PSI_red = zeros(reduced,N); % Deriv. of output w.r.t. each weight
RHO = zeros(parameters,N); % Partial -"- -"-
lambda_old = 0;
if ~exist('trparms') | isempty(trparms) % Default training parameters
trparms = settrain;
lambda = trparms.lambda;
D = trparms.D;
skip = trparms.skip+1;
else % User specified values
if ~isstruct(trparms),
error('''trparms'' must be a structure variable.');
end
if ~isfield(trparms,'infolevel')
trparms = settrain(trparms,'infolevel','default');
end
if ~isfield(trparms,'maxiter')
trparms = settrain(trparms,'maxiter','default');
end
if ~isfield(trparms,'critmin')
trparms = settrain(trparms,'critmin','default');
end
if ~isfield(trparms,'critterm')
trparms = settrain(trparms,'critterm','default');
end
if ~isfield(trparms,'gradterm')
trparms = settrain(trparms,'gradterm','default');
end
if ~isfield(trparms,'paramterm')
trparms = settrain(trparms,'paramterm','default');
end
if ~isfield(trparms,'lambda')
trparms = settrain(trparms,'lambda','default');
end
lambda = trparms.lambda;
if ~isfield(trparms,'skip')
trparms= settrain(trparms,'skip','default');
end
skip=trparms.skip+1;
if ~isfield(trparms,'D')
trparms = settrain(trparms,'D','default');
D = trparms.D;
else
if length(trparms.D)==1, % Scalar weight decay parameter
D = trparms.D(ones(1,reduced))';
elseif length(trparms.D)==2, % Two weight decay parameters
D = trparms.D([ones(1,parameters2) 2*ones(1,parameters1)])';
D = D(theta_index);
elseif length(trparms.D)>2, % Individual weight decay
D = trparms.D(:);
end
end
end
D = D(:);
N2 = N-skip+1;
critdif = trparms.critterm+1; % Initialize stopping variables
gradmax = trparms.gradterm+1;
paramdif = trparms.paramterm+1;
PI_vector = zeros(trparms.maxiter,1); % Vector for storing criterion values
% >>>>>>>>>>>>>>>>>>>> CONSTRUCT THE REGRESSION MATRIX PHI <<<<<<<<<<<<<<<<<<<<<
PHI = zeros(nab,N);
jj = nmax+1:Ndat;
for k = 1:na, PHI(k,:) = Y(jj-k); end
index5 = na;
for kk = 1:nu,
for k = 1:nb(kk), PHI(k+index5,:) = U(kk,jj-k-nk(kk)+1); end
index5 = index5 + nb(kk);
end
PHI_aug = [PHI;ones(1,N)]; % Augment PHI with a row containg ones
Y = Y(nmax+1:Ndat); % Extract the 'target' part of Y
%----------------------------------------------------------------------------------
%-------------- TRAIN NETWORK -------------
%----------------------------------------------------------------------------------
clc;
c=fix(clock);
fprintf('Network training started at %2i.%2i.%2i\n\n',c(4),c(5),c(6));
% >>>>>>>>>>>>>>>>>>>>> COMPUTE NETWORK OUTPUT y2(theta) <<<<<<<<<<<<<<<<<<<<<<
for t=1:N,
h1 = W1*PHI_aug(:,t);
y1(H_hidden,t) = pmntanh(h1(H_hidden));
y1(L_hidden,t) = h1(L_hidden);
h2 = W2*y1(:,t);
y2(H_output,t) = pmntanh(h2(H_output,:));
y2(L_output,t) = h2(L_output,:);
for d=1:min(na,N-t),
PHI_aug(d,t+d) = y2(:,t);
end
end
E = Y - y2; % Prediction error
SSE = E(skip:N)*E(skip:N)'; % Sum of squared errors (SSE)
PI = (SSE+theta_red'*(D.*theta_red))/(2*N2); % Performance index
while (iteration<=trparms.maxiter & PI>trparms.critmin & lambda<1e7 & ...
(critdif>trparms.critterm | gradmax>trparms.gradterm | ...
paramdif>trparms.paramterm))
if dw==1,
% >>>>>>>>>>>>>>>>>>>>>>>>>>> COMPUTE THE RHO MATRIX <<<<<<<<<<<<<<<<<<<<<<<<<<
% Partial derivative of output (y2) with respect to each weight and neglecting
% that the model inputs (the residuals) depends on the weights
% ========== Elements corresponding to the linear output units ============
for i = L_output'
index1 = (i-1) * (hidden + 1) + 1;
% -- The part of RHO corresponding to hidden-to-output layer weights --
RHO(index1:index1+hidden,index2+i) = y1;
% ---------------------------------------------------------------------
% -- The part of RHO corresponding to input-to-hidden layer weights ---
for j = L_hidden',
RHO(index(j):index(j)+inputs,index2+i) = W2(i,j)*PHI_aug;
end
for j = H_hidden',
tmp = W2(i,j)*(1-y1(j,:).*y1(j,:));
RHO(index(j):index(j)+inputs,index2+i) = tmp(ones_i,:).*PHI_aug;
end
% ---------------------------------------------------------------------
end
% ============ Elements corresponding to the tanh output units =============
for i = H_output',
index1 = (i-1) * (hidden + 1) + 1;
% -- The part of RHO corresponding to hidden-to-output layer weights --
tmp = 1 - y2(i,:).*y2(i,:);
RHO(index1:index1+hidden,index2+i) = y1.*tmp(ones_h,:);
% ---------------------------------------------------------------------
% -- The part of RHO corresponding to input-to-hidden layer weights ---
for j = L_hidden',
tmp = W2(i,j)*(1-y2(i,:).*y2(i,:));
RHO(index(j):index(j)+inputs,index2+i) = tmp(ones_i,:).* PHI_aug;
end
for j = H_hidden',
tmp = W2(i,j)*(1-y1(j,:).*y1(j,:));
tmp2 = (1-y2(i,:).*y2(i,:));
RHO(index(j):index(j)+inputs,index2+i) = tmp(ones_i,:)...
.*tmp2(ones_i,:).* PHI_aug;
end
% ---------------------------------------------------------------------
end
RHO_red = RHO(theta_index(1:reduced),:);
% >>>>>>>>>>>>>>>>>>>>>>>>>>> COMPUTE THE PSI MATRIX <<<<<<<<<<<<<<<<<<<<<<<<<<
% ---------- Find derivative of output wrt. the past outputs ----------
for t=1:N,
dy2dy1 = W2(:,1:hidden);
for j = H_output',
dy2dy1(j,:) = W2(j,1:hidden)*(1-y2(j,t).*y2(j,t));
end
% Matrix of partial derivatives of the output from each hidden unit with
% respect to each input:
dy1dy(L_hidden,:) = W1(L_hidden,index4);
for j = H_hidden',
dy1dy(j,:) = W1(j,index4)*(1-y1(j,t).*y1(j,t));
end
% Matrix of partial derivatives of each output with respect to each input
dy2dy(:,t)= (dy2dy1 * dy1dy)';
end
% ---------- Determine PSI by "filtering" ----------
for t=1:N,
PSI_red(:,t)=RHO_red(:,t);
for t1=1:min(na,t-1),
PSI_red(:,t) = PSI_red(:,t)+dy2dy(t1,t)*PSI_red(:,t-t1);
end
end
% >>>>>>>>>>>>>>>>>>>>>>>>>>> COMPUTE h_k <<<<<<<<<<<<<<<<<<<<<<<<<<<
% -- Gradient --
G = PSI_red(:,skip:N)*E(skip:N)'-D.*theta_red;
% -- Hessian --
H = PSI_red(:,skip:N)*PSI_red(:,skip:N)';
H(index3) = H(index3)'+D; % Add diagonal matrix
dw = 0;
end
% -- L-M Hessian --
H(index3) = H(index3)'+(lambda-lambda_old); % Add diagonal matrix
% -- Search direction --
h = H\G; % Solve for search direction
% -- Compute 'apriori' iterate --
theta_red_new = theta_red + h; % Update parameter vector
theta(theta_index) = theta_red_new;
% -- Put the parameters back into the weight matrices --
W1_new = reshape(theta(parameters2+1:parameters),inputs+1,hidden)';
W2_new = reshape(theta(1:parameters2),hidden+1,outputs)';
% >>>>>>>>>>>>>>>>>>>> COMPUTE NETWORK OUTPUT y2(theta+h) <<<<<<<<<<<<<<<<<<<<
for t=1:N,
h1 = W1_new*PHI_aug(:,t);
y1(H_hidden,t) = pmntanh(h1(H_hidden));
y1(L_hidden,t) = h1(L_hidden);
h2 = W2_new*y1(:,t);
y2(H_output,t) = pmntanh(h2(H_output,:));
y2(L_output,t) = h2(L_output,:);
for d=1:min(na,N-t),
PHI_aug(d,t+d) = y2(:,t);
end
end
E_new = Y - y2; % Prediction error
SSE_new = E_new(skip:N)*E_new(skip:N)';% Sum of squared errors (SSE)
PI_new = (SSE_new + theta_red_new'*(D.*theta_red_new))/(2*N2); % PI
% >>>>>>>>>>>>>>>>>>>>>>>>>>> UPDATE lambda <<<<<<<<<<<<<<<<<<<<<<<<<<<<
L = h'*G + h'*(h.*(D+lambda));
lambda_old = lambda;
% Decrease lambda if SSE has fallen 'sufficiently'
if 2*N2*(PI - PI_new) > (0.75*L),
lambda = lambda/2;
% Increase lambda if SSE has grown 'sufficiently'
elseif 2*N2*(PI-PI_new) <= (0.25*L),
lambda = 2*lambda;
end
% >>>>>>>>>>>>>>>>>>>> UPDATES FOR NEXT ITERATION <<<<<<<<<<<<<<<<<<<<
% Update only if criterion has decreased
if PI_new < PI,
critdif = PI-PI_new; % Criterion difference
gradmax = max(abs(G))/N2; % Maximum gradient
paramdif = max(abs(theta_red_new - theta_red)); % Maximum parameter dif.
W1 = W1_new;
W2 = W2_new;
theta_red = theta_red_new;
E = E_new;
PI = PI_new;
dw = 1;
lambda_old = 0;
iteration = iteration + 1;
PI_vector(iteration-1) = PI; % Collect PI in vector
switch(trparms.infolevel) % Print on-line inform
case 1
fprintf('# %i W=%4.3e critdif=%3.2e maxgrad=%3.2e paramdif=%3.2e\n',...
iteration-1,PI,critdif,gradmax,paramdif);
otherwise
fprintf('iteration # %i W = %4.3e\r',iteration-1,PI);
end
end
end
%----------------------------------------------------------------------------------
%-------------- END OF NETWORK TRAINING -------------
%----------------------------------------------------------------------------------
iteration = iteration-1;
PI_vector = PI_vector(1:iteration);
c=fix(clock);
fprintf('\n\nNetwork training ended at %2i.%2i.%2i\n',c(4),c(5),c(6));
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -