📄 nnarx.m
字号:
function [W1,W2,PI_vector,iteration,lambda]=nnarx(NetDef,NN,W1,W2,trparms,Y,U)
% NNARX
% -----
% Determine a nonlinear ARX model of a dynamic system by training a
% two-layer neural network with the Marquardt method. The function
% can handle multi-input systems (MISO).
%
% CALL:
% [W1,W2,critvec,iteration,lambda]=nnarx(NetDef,NN,W1,W2,trparms,Y,U)
%
% INPUTS:
% U : Input signal (= control signal) (left out in the nnar case).
% dim(U) = [(inputs) * (# of data)]
% Y : Output signal. dim(Y) = [1 * # of data]
% NN : NN=[na nb nk].
% na = # of past outputs used for determining the prediction
% nb = # of past inputs used for determining prediction
% nk = time delay (usually 1)
% For multi-input systems nb and nk contain as many columns as
% there are inputs.
% W1,W2 : Input-to-hidden layer and hidden-to-output layer weights.
% If they are passed as [] they are initialized automatically
% trparms: Data structure with parameters associated with the
% training algorithm (optional). Use the function SETTRAIN if
% you do not want to use the default values.
%
% For time series (NNAR models), use NN=na.
%
% See the function MARQ for an explanation of the remaining input arguments
% as well as of the returned variables.
% Programmed by : Magnus Norgaard, IAU/IMM
% LastEditDate : June 1, 2001
% >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> INITIALIZATIONS <<<<<<<<<<<<<<<<<<<<<<<<<<<<<
N = length(Y);
na = NN(1);
if length(NN)==1
nb = 0; % nnar model
nk = 0;
nu = 0;
else
[nu,N] = size(U);
nb = NN(2:1+nu); % nnarx model
nk = NN(2+nu:1+2*nu);
end
nmax = max([na,nb+nk-1]);
nab = na+sum(nb);
% -- Initialize weights if nescessary --
if isempty(W1)| isempty(W2),
hidden = length(NetDef(1,:)); % Number of hidden neurons
W1 = rand(hidden,nab+1)-0.5;
W2 = rand(1,hidden+1)-0.5;
end
% -- Initialize 'trparms' if nescessary --
if isempty(trparms), trparms=[]; end
% >>>>>>>>>>>>>>>>>>>> CONSTRUCT THE REGRESSION MATRIX PHI <<<<<<<<<<<<<<<<<<<<<
PHI = zeros(nab,N-nmax);
jj = nmax+1:N;
for k = 1:na, PHI(k,:) = Y(jj-k); end
index = na;
for kk = 1:nu,
for k = 1:nb(kk), PHI(k+index,:) = U(kk,jj-k-nk(kk)+1); end
index = index + nb(kk);
end
% >>>>>>>>>>>>>>>>>>>> CALL TRAINING FUNCTION <<<<<<<<<<<<<<<<<<<<<
[W1,W2,PI_vector,iteration,lambda]=marq(NetDef,W1,W2,PHI,Y(nmax+1:N),trparms);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -