📄 util_cng.c
字号:
/*
**
** File: "util_cng.c"
**
** Description: General Comfort Noise Generation functions
**
**
** Functions: Calc_Exc_Rand() Computes random excitation
** used both by coder & decoder
** Qua_SidGain() Quantization of SID gain
** used by coder
** Dec_SidGain() Decoding of SID gain
** used both by coder & decoder
**
** Local functions :
** distG()
** random_number()
*/
/*
ITU-T G.723 Speech Coder ANSI-C Source Code Version 5.00
copyright (c) 1995, AudioCodes, DSP Group, France Telecom,
Universite de Sherbrooke. All rights reserved.
*/
#include <stdio.h>
#include <stdlib.h>
#include "typedef.h"
#include "cst_lbc.h"
#include "tab_lbc.h"
#include "util_lbc.h"
#include "exc_lbc.h"
#include "basop.h"
#include "util_cng.h"
/* Declaration of local functions */
static Word16 random_number(Word16 number_max_p1, Word16 *nRandom);
/*
**
** Function: Calc_Exc_Rand()
**
** Description: Computation of random excitation for inactive frames:
** Adaptive codebook entry selected randomly
** Higher rate innovation pattern selected randomly
** Computes innovation gain to match curGain
**
** Links to text:
**
** Arguments:
**
** Word16 curGain current average gain to match
** Word16 *PrevExc previous/current excitation (updated)
** Word16 *DataEXc current frame excitation
** Word16 *nRandom random generator status (input/output)
**
** Outputs:
**
** Word16 *PrevExc
** Word16 *DataExc
** Word16 *nRandom
**
** Return value: None
**
*/
void Calc_Exc_Rand(Word16 curGain, Word16 *PrevExc, Word16 *DataExc,
Word16 *nRandom, LINEDEF *Line)
{
int i, i_subfr, iblk;
Word16 temp, temp2;
Word16 j;
Word16 TabPos[2*NbPulsBlk], TabSign[2*NbPulsBlk];
Word16 *ptr_TabPos, *ptr_TabSign;
Word16 *ptr1, *curExc;
Word16 sh1, x1, x2, inter_exc, delta, b0;
Word32 L_acc, L_c, L_temp;
Word16 tmp[SubFrLen/Sgrid];
Word16 offset[SubFrames];
Word16 tempExc[SubFrLenD];
/*
* generate LTP codes
*/
Line->Olp[0] = random_number(21, nRandom) + (Word16)123;
Line->Olp[1] = random_number(21, nRandom) + (Word16)123;
for(i_subfr=0; i_subfr<SubFrames; i_subfr++) { /* in [1, NbFilt] */
Line->Sfs[i_subfr].AcGn = random_number(NbFilt, nRandom) + (Word16)1;
}
Line->Sfs[0].AcLg = 1;
Line->Sfs[1].AcLg = 0;
Line->Sfs[2].AcLg = 1;
Line->Sfs[3].AcLg = 3;
/*
* Random innovation :
* Selection of the grids, signs and pulse positions
*/
/* Signs and Grids */
ptr_TabSign = TabSign;
ptr1 = offset;
for(iblk=0; iblk<SubFrames/2; iblk++) {
temp = random_number((1 << (NbPulsBlk+2)), nRandom);
*ptr1++ = temp & (Word16)0x0001;
temp = shr(temp, 1);
*ptr1++ = add( (Word16) SubFrLen, (Word16) (temp & 0x0001) );
for(i=0; i<NbPulsBlk; i++) {
*ptr_TabSign++= shl(sub((temp & (Word16)0x0002), 1), 14);
temp = shr(temp, 1);
}
}
/* Positions */
ptr_TabPos = TabPos;
for(i_subfr=0; i_subfr<SubFrames; i_subfr++) {
for(i=0; i<(SubFrLen/Sgrid); i++) tmp[i] = (Word16)i;
temp = (SubFrLen/Sgrid);
for(i=0; i<Nb_puls[i_subfr]; i++) {
j = random_number(temp, nRandom);
*ptr_TabPos++ = add(shl(tmp[(int)j],1), offset[i_subfr]);
temp = sub(temp, 1);
tmp[(int)j] = tmp[(int)temp];
}
}
/*
* Compute fixed codebook gains
*/
ptr_TabPos = TabPos;
ptr_TabSign = TabSign;
curExc = DataExc;
i_subfr = 0;
for(iblk=0; iblk<SubFrames/2; iblk++) {
/* decode LTP only */
Decod_Acbk(curExc, &PrevExc[0], Line->Olp[iblk],
Line->Sfs[i_subfr].AcLg, Line->Sfs[i_subfr].AcGn);
Decod_Acbk(&curExc[SubFrLen], &PrevExc[SubFrLen], Line->Olp[iblk],
Line->Sfs[i_subfr+1].AcLg, Line->Sfs[i_subfr+1].AcGn);
temp2 = 0;
for(i=0; i<SubFrLenD; i++) {
temp = abs_s(curExc[i]);
if(temp > temp2) temp2 = temp;
}
if(temp2 == 0) sh1 = 0;
else {
sh1 = sub(4,norm_s(temp2)); /* 4 bits of margin */
if(sh1 < -2) sh1 = -2;
}
L_temp = 0L;
for(i=0; i<SubFrLenD; i++) {
temp = shr(curExc[i], sh1); /* left if sh1 < 0 */
L_temp = L_mac(L_temp, temp, temp);
tempExc[i] = temp;
} /* ener_ltp x 2**(-2sh1+1) */
L_acc = 0L;
for(i=0; i<NbPulsBlk; i++) {
L_acc = L_mac(L_acc, tempExc[(int)ptr_TabPos[i]], ptr_TabSign[i]);
}
inter_exc = extract_h(L_shl(L_acc, 1)); /* inter_exc x 2-sh1 */
/* compute SubFrLenD x curGain**2 x 2**(-2sh1+1) */
/* curGain input = 2**5 curGain */
L_acc = L_mult(curGain, SubFrLen);
L_acc = L_shr(L_acc, 6);
temp = extract_l(L_acc); /* SubFrLen x curGain : avoids overflows */
L_acc = L_mult(temp, curGain);
temp = shl(sh1, 1);
temp = add(temp, 4);
L_acc = L_shr(L_acc, temp); /* SubFrLenD x curGain**2 x 2**(-2sh1+1) */
/* c = (ener_ltp - SubFrLenD x curGain**2)/nb_pulses_blk */
/* compute L_c = c >> 2sh1-1 */
L_acc = L_sub(L_temp, L_acc);
/* x 1/nb_pulses_blk */
L_c = L_mls(L_acc, InvNbPulsBlk);
/*
* Solve EQ(X) = X**2 + 2 b0 X + c
*/
/* delta = b0 x b0 - c */
b0 = mult_r(inter_exc, InvNbPulsBlk); /* b0 >> sh1 */
L_acc = L_msu(L_c, b0, b0); /* (c - b0**2) >> 2sh1-1 */
L_acc = L_negate(L_acc); /* delta x 2**(-2sh1+1) */
/* Case delta <= 0 */
if(L_acc <= 0) { /* delta <= 0 */
x1 = negate(b0); /* sh1 */
}
/* Case delta > 0 */
else {
delta = Sqrt_lbc(L_acc); /* >> sh1 */
x1 = sub(delta, b0); /* x1 >> sh1 */
x2 = add(b0, delta); /* (-x2) >> sh1 */
if(abs_s(x2) < abs_s(x1)) {
x1 = negate(x2);
}
}
/* Update DataExc */
sh1 = add(sh1, 1);
temp = shl(x1, sh1);
if(temp > (2*Gexc_Max)) temp = (2*Gexc_Max);
if(temp < -(2*Gexc_Max)) temp = -(2*Gexc_Max);
for(i=0; i<NbPulsBlk; i++) {
j = *ptr_TabPos++;
curExc[(int)j] = add(curExc[(int)j], mult(temp,
(*ptr_TabSign++)) );
}
/* update PrevExc */
ptr1 = PrevExc;
for(i=SubFrLenD; i<PitchMax; i++) *ptr1++ = PrevExc[i];
for(i=0; i<SubFrLenD; i++) *ptr1++ = curExc[i];
curExc += SubFrLenD;
i_subfr += 2;
} /* end of loop on LTP blocks */
return;
}
/*
**
** Function: random_number()
**
** Description: returns a number randomly taken in [0, n]
** with np1 = n+1 at input
**
** Links to text:
**
** Arguments:
**
** Word16 np1
** Word16 *nRandom random generator status (input/output)
**
** Outputs:
**
** Word16 *nRandom
**
** Return value: random number in [0, (np1-1)]
**
*/
Word16 random_number(Word16 np1, Word16 *nRandom)
{
Word16 temp;
temp = Rand_lbc(nRandom) & (Word16)0x7FFF;
temp = mult(temp, np1);
return(temp);
}
/*
**
** Function: Qua_SidGain()
**
** Description: Quantization of Sid gain
** Pseudo-log quantizer in 3 segments
** 1st segment : length = 16, resolution = 2
** 2nd segment : length = 16, resolution = 4
** 3rd segment : length = 32, resolution = 8
** quantizes a sum of energies
**
** Links to text:
**
** Arguments:
**
** Word16 *Ener table of the energies
** Word16 *shEner corresponding scaling factors
** Word16 nq if nq >= 1 : quantization of nq energies
** for SID gain calculation in function Cod_Cng()
** if nq = 0 : in function Comp_Info(),
** quantization of saved estimated excitation energy
**
** Outputs: None
**
**
** Return value: index of quantized energy
**
*/
Word16 Qua_SidGain(Word16 *Ener, Word16 *shEner, Word16 nq)
{
Word16 temp, iseg, iseg_p1;
Word16 j, j2, k, exp;
Word32 L_x, L_y;
Word16 sh1;
Word32 L_acc;
int i;
if(nq == 0) {
/* Quantize energy saved for frame erasure case */
/* L_x = 2 x average_ener */
temp = shl(*shEner, 1);
temp = sub(16, temp);
L_acc = L_deposit_l(*Ener);
L_acc = L_shl(L_acc, temp); /* may overflow, and >> if temp < 0 */
L_x = L_mls(L_acc, fact[0]);
}
else {
/*
* Compute weighted average of energies
* Ener[i] = enerR[i] x 2**(shEner[i]-14)
* L_x = k[nq] x SUM(i=0->nq-1) enerR[i]
* with k[nq] = 2 x fact_mul x fact_mul / nq x Frame
*/
sh1 = shEner[0];
for(i=1; i<nq; i++) {
if(shEner[i] < sh1) sh1 = shEner[i];
}
for(i=0, L_x=0L; i<nq; i++) {
temp = sub(shEner[i], sh1);
temp = shr(Ener[i], temp);
temp = mult_r(fact[nq], temp);
L_x = L_add(L_x, L_deposit_l(temp));
}
temp = sub(15, sh1);
L_x = L_shl(L_x, temp);
}
/* Quantize L_x */
if(L_x >= L_bseg[2]) return(63);
/* Compute segment number iseg */
if(L_x >= L_bseg[1]) {
iseg = 2;
exp = 4;
}
else {
exp = 3;
if(L_x >= L_bseg[0]) iseg = 1;
else iseg = 0;
}
iseg_p1 = add(iseg,1);
j = shl(1, exp);
k = shr(j,1);
/* Binary search in segment iseg */
for(i=0; i<exp; i++) {
temp = add(base[iseg], shl(j, iseg_p1));
L_y = L_mult(temp, temp);
if(L_x >= L_y) j = add(j, k);
else j = sub(j, k);
k = shr(k, 1);
}
temp = add(base[iseg], shl(j, iseg_p1));
L_y = L_mult(temp, temp);
L_y = L_sub(L_y, L_x);
if(L_y <= 0L) {
j2 = add(j, 1);
temp = add(base[iseg], shl(j2, iseg_p1));
L_acc = L_mult(temp, temp);
L_acc = L_sub(L_x, L_acc);
if(L_y > L_acc) temp = add(shl(iseg,4), j);
else temp = add(shl(iseg,4), j2);
}
else {
j2 = sub(j, 1);
temp = add(base[iseg], shl(j2, iseg_p1));
L_acc = L_mult(temp, temp);
L_acc = L_sub(L_x, L_acc);
if(L_y < L_acc) temp = add(shl(iseg,4), j);
else temp = add(shl(iseg,4), j2);
}
return(temp);
}
/*
**
** Function: Dec_SidGain()
**
** Description: Decoding of quantized Sid gain
** (corresponding to sqrt of average energy)
**
** Links to text:
**
** Arguments:
**
** Word16 iGain index of quantized Sid Gain
**
** Outputs: None
**
** Return value: decoded gain value << 5
**
*/
Word16 Dec_SidGain(Word16 iGain)
{
Word16 i, iseg;
Word16 temp;
iseg = shr(iGain, 4);
if(iseg == 3) iseg = 2;
i = sub(iGain, shl(iseg, 4));
temp = add(iseg, 1);
temp = shl(i, temp);
temp = add(temp, base[iseg]); /* SidGain */
temp = shl(temp, 5); /* << 5 */
return(temp);
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -