📄 fblin32alpha.c
字号:
register int d; a = (int) (unsigned char) src8[MWI_BYTE_OFFSET_ALPHA]; if (a == 255) { dst8[0] = src8[0]; dst8[1] = src8[1]; dst8[2] = src8[2]; dst8[MWI_BYTE_OFFSET_ALPHA] = a; } else if (a != 0) { s = (int) (unsigned char) src8[MWI_BYTE_OFFSET_R]; d = (int) (unsigned char) dst8[MWI_BYTE_OFFSET_R]; dst8[MWI_BYTE_OFFSET_R] = (unsigned char) ((((s - d) * a) >> 8) + d); s = (int) (unsigned char) src8[MWI_BYTE_OFFSET_G]; d = (int) (unsigned char) dst8[MWI_BYTE_OFFSET_G]; dst8[MWI_BYTE_OFFSET_G] = (unsigned char) ((((s - d) * a) >> 8) + d); s = (int) (unsigned char) src8[MWI_BYTE_OFFSET_B]; d = (int) (unsigned char) dst8[MWI_BYTE_OFFSET_B]; dst8[MWI_BYTE_OFFSET_B] = (unsigned char) ((((s - d) * a) >> 8) + d); d = (int) (unsigned char) dst8[MWI_BYTE_OFFSET_ALPHA]; dst8[MWI_BYTE_OFFSET_ALPHA] = (a + ((d * (256 - a)) >> 8)); } src8 += 4; dst8 += 4; } dst8 += (dlinelen - w) * 4; src8 += (slinelen - w) * 4; } } else { /* FIXME: Implement other alpha blend modes */ } DRAWOFF;}/* srccopy stretchblt*/static voidlinear32a_stretchblit(PSD dstpsd, MWCOORD dstx, MWCOORD dsty, MWCOORD dstw, MWCOORD dsth, PSD srcpsd, MWCOORD srcx, MWCOORD srcy, MWCOORD srcw, MWCOORD srch, long op){ ADDR32 dst; ADDR32 src; int dlinelen = dstpsd->linelen; int slinelen = srcpsd->linelen; int i, ymax; int row_pos, row_inc; int col_pos, col_inc; unsigned long pixel = 0; assert(dstpsd->addr != 0); assert(dstx >= 0 && dstx < dstpsd->xres); assert(dsty >= 0 && dsty < dstpsd->yres); assert(dstw > 0); assert(dsth > 0); assert(srcpsd->addr != 0); assert(srcx >= 0 && srcx < srcpsd->xres); assert(srcy >= 0 && srcy < srcpsd->yres); assert(srcw > 0); assert(srch > 0); assert(dstx + dstw <= dstpsd->xres); assert(dsty + dsth <= dstpsd->yres); assert(srcx + srcw <= srcpsd->xres); assert(srcy + srch <= srcpsd->yres); DRAWON; row_pos = 0x10000; row_inc = (srch << 16) / dsth; /* stretch blit using integer ratio between src/dst height/width */ for (ymax = dsty + dsth; dsty < ymax; ++dsty) { /* find source y position */ while (row_pos >= 0x10000L) { ++srcy; row_pos -= 0x10000L; } dst = (ADDR32) dstpsd->addr + dstx + dsty * dlinelen; src = (ADDR32) srcpsd->addr + srcx + (srcy - 1) * slinelen; /* copy a row of pixels */ col_pos = 0x10000; col_inc = (srcw << 16) / dstw; for (i = 0; i < dstw; ++i) { /* get source x pixel */ while (col_pos >= 0x10000L) { pixel = *src++; col_pos -= 0x10000L; } *dst++ = pixel; col_pos += col_inc; } row_pos += row_inc; } DRAWOFF;}/* * This stretchblit code was originally written for the TriMedia * VLIW CPU. Therefore it uses RESTRICT pointers, and the special * one-assembler-opcode pseudo-functions SIGN and ABS. * * (The 'restrict' extension is in C99, so for a C99 compiler you * could "#define RESTRICT restrict" or put * "CFLAGS += -DRESTRICT=restrict" in the makefile). * * Compatibility definitions: */#ifndef RESTRICT#define RESTRICT#endif#ifndef SIGN#define SIGN(x) (((x) > 0) ? 1 : (((x) == 0) ? 0 : -1))#endif#ifndef ABS#define ABS(x) (((x) >= 0) ? (x) : -(x))#endif/* Blit a 32-bit image. * Can stretch the image by any X and/or Y scale factor. * Can flip the image in the X and/or Y axis. * * This is the faster version with no per-pixel multiply and a single * decision tree for the inner loop, by Jon. Based on Alex's original * all-integer version. * * Paramaters: * srf - Dest surface * dest_x_start * dest_y_start - Top left corner of dest rectangle * width, height - Size in dest co-ordinates. * x_denominator - Denominator for source X value fractions. Note that * this must be even, and all the numerators must also be * even, so we can easily divide by 2. * y_denominator - Denominator for source Y value fractions. Note that * this must be even, and all the numerators must also be * even, so we can easily divide by 2. * src_x_fraction - * src_y_fraction - Point in source that corresponds to the top left corner * of the pixel (dest_x_start, dest_y_start). This is a * fraction - to get a float, divide by y_denominator. * x_step_fraction - X step in src for an "x++" step in dest. May be negative * (for a flip). Expressed as a fraction - divide it by * x_denominator for a float. * y_step_fraction - Y step in src for a "y++" step in dest. May be negative * (for a flip). Expressed as a fraction - divide it by * y_denominator for a float. * image - Source image. * op - Raster operation, currently ignored. */static voidlinear32a_stretchblitex(PSD dstpsd, PSD srcpsd, MWCOORD dest_x_start, MWCOORD dest_y_start, MWCOORD width, MWCOORD height, int x_denominator, int y_denominator, int src_x_fraction, int src_y_fraction, int x_step_fraction, int y_step_fraction, long op){ /* Pointer to the current pixel in the source image */ unsigned long *RESTRICT src_ptr; /* Pointer to x=xs1 on the next line in the source image */ unsigned long *RESTRICT next_src_ptr; /* Pointer to the current pixel in the dest image */ unsigned long *RESTRICT dest_ptr; /* Pointer to x=xd1 on the next line in the dest image */ unsigned long *next_dest_ptr; /* Keep track of error in the source co-ordinates */ int x_error; int y_error; /* 1-unit steps "forward" through the source image, as steps in the image * byte array. */ int src_x_step_one; int src_y_step_one; /* normal steps "forward" through the source image, as steps in the image * byte array. */ int src_x_step_normal; int src_y_step_normal; /* 1-unit steps "forward" through the source image, as steps in the image * byte array. */ int x_error_step_normal; int y_error_step_normal; /* Countdown to the end of the destination image */ int x_count; int y_count; /* Start position in source, in whole pixels */ int src_x_start; int src_y_start; /* Error values for start X position in source */ int x_error_start; /* 1-unit step down dest, in bytes. */ int dest_y_step; /*DPRINTF("Nano-X: linear32_stretchflipblit( dest=(%d,%d) %dx%d )\n", dest_x_start, dest_y_start, width, height); */ /* We add half a dest pixel here so we're sampling from the middle of * the dest pixel, not the top left corner. */ src_x_fraction += (x_step_fraction >> 1); src_y_fraction += (y_step_fraction >> 1); /* Seperate the whole part from the fractions. * * Also, We need to do lots of comparisons to see if error values are * >= x_denominator. So subtract an extra x_denominator for speed - then * we can just check if it's >= 0. */ src_x_start = src_x_fraction / x_denominator; src_y_start = src_y_fraction / y_denominator; x_error_start = src_x_fraction - (src_x_start + 1) * x_denominator; y_error = src_y_fraction - (src_y_start + 1) * y_denominator; /* precalculate various deltas */ src_x_step_normal = x_step_fraction / x_denominator; src_x_step_one = SIGN(x_step_fraction); x_error_step_normal = ABS(x_step_fraction) - ABS(src_x_step_normal) * x_denominator; src_y_step_normal = y_step_fraction / y_denominator; src_y_step_one = SIGN(y_step_fraction) * srcpsd->linelen; y_error_step_normal = ABS(y_step_fraction) - ABS(src_y_step_normal) * y_denominator; src_y_step_normal *= srcpsd->linelen; /* DPRINTF("ov_stretch_image8: X: One step=%d, err-=%d; normal step=%d, err+=%d\n Y: One step=%d, err-=%d; normal step=%d, err+=%d\n", src_x_step_one, x_denominator, src_x_step_normal, x_error_step_normal, src_y_step_one, y_denominator, src_y_step_normal, y_error_step_normal); */ /* Pointer to the first source pixel */ next_src_ptr = ((unsigned long *) srcpsd->addr) + src_y_start * srcpsd->linelen + src_x_start; /* Cache the width of a scanline in dest */ dest_y_step = dstpsd->linelen; /* Pointer to the first dest pixel */ next_dest_ptr = ((unsigned long *) dstpsd->addr) + (dest_y_start * dest_y_step) + dest_x_start; /* * Note: The MWROP_SRC and MWROP_XOR_FGBG cases below are simple * expansions of the default case. They can be removed without * significant speed penalty if you need to reduce code size. * * The SRC_OVER case cannot be removed (since applyOp doesn't * handle it correctly). * * The MWROP_CLEAR case could be removed. But it is a large * speed increase for a small quantity of code. * * FIXME Porter-Duff rules other than SRC_OVER not handled!! */ switch (op & MWROP_EXTENSION) { case MWROP_SRC: /* Benchmarking shows that this while loop is faster than the equivalent * for loop: for(y_count=0; y_count<height; y_count++) { ... } */ y_count = height; while (y_count-- > 0) { src_ptr = next_src_ptr; dest_ptr = next_dest_ptr; x_error = x_error_start; x_count = width; while (x_count-- > 0) { *dest_ptr++ = *src_ptr; src_ptr += src_x_step_normal; x_error += x_error_step_normal; if (x_error >= 0) { src_ptr += src_x_step_one; x_error -= x_denominator; } } next_dest_ptr += dest_y_step; next_src_ptr += src_y_step_normal; y_error += y_error_step_normal; if (y_error >= 0) { next_src_ptr += src_y_step_one; y_error -= y_denominator; } } break; case MWROP_SRC_OVER: /* Benchmarking shows that this while loop is faster than the equivalent * for loop: for(y_count=0; y_count<height; y_count++) { ... } */ y_count = height; while (y_count-- > 0) { src_ptr = next_src_ptr; dest_ptr = next_dest_ptr; x_error = x_error_start; x_count = width; while (x_count-- > 0) { int c; int a; int s; register int d; int orig; int result; c = *src_ptr; a = (c >> 24) & 0xFF; if (a == 255) { *dest_ptr = c; } else if (a != 0) { orig = *dest_ptr; d = (orig >> 24) & 0xFF; result = ((d + a - ((d * a) >> 8)) << 24); s = ((c >> 16) & 0xFF); d = (orig >> 16) & 0xFF; result |= (((((s - d) * a) >> 8) + d) << 16); s = ((c >> 8) & 0xFF); d = (orig >> 8) & 0xFF; result |= (((((s - d) * a) >> 8) + d) << 8); s = (c & 0xFF); d = orig & 0xFF; result |= ((((s - d) * a) >> 8) + d); *dest_ptr = result; } dest_ptr++; src_ptr += src_x_step_normal; x_error += x_error_step_normal; if (x_error >= 0) { src_ptr += src_x_step_one; x_error -= x_denominator; } } next_dest_ptr += dest_y_step; next_src_ptr += src_y_step_normal; y_error += y_error_step_normal; if (y_error >= 0) { next_src_ptr += src_y_step_one; y_error -= y_denominator; } } break; case MWROP_XOR_FGBG: y_count = height; while (y_count-- > 0) { src_ptr = next_src_ptr; dest_ptr = next_dest_ptr; x_error = x_error_start; x_count = width; while (x_count-- > 0) { *dest_ptr++ ^= *src_ptr ^ gr_background; src_ptr += src_x_step_normal; x_error += x_error_step_normal; if (x_error >= 0) { src_ptr += src_x_step_one; x_error -= x_denominator; } } next_dest_ptr += dest_y_step; next_src_ptr += src_y_step_normal; y_error += y_error_step_normal; if (y_error >= 0) { next_src_ptr += src_y_step_one; y_error -= y_denominator; } } break; case MWROP_CLEAR: y_count = height; while (y_count-- > 0) { dest_ptr = next_dest_ptr; x_count = width; while (x_count-- > 0) { *dest_ptr++ = 0; } next_dest_ptr += dest_y_step; } break; default: y_count = height; while (y_count-- > 0) { src_ptr = next_src_ptr; dest_ptr = next_dest_ptr; x_error = x_error_start; x_count = width; while (x_count-- > 0) { applyOp(MWROP_TO_MODE(op), *src_ptr, dest_ptr, ADDR32); dest_ptr++; src_ptr += src_x_step_normal; x_error += x_error_step_normal; if (x_error >= 0) { src_ptr += src_x_step_one; x_error -= x_denominator; } } next_dest_ptr += dest_y_step; next_src_ptr += src_y_step_normal; y_error += y_error_step_normal; if (y_error >= 0) { next_src_ptr += src_y_step_one; y_error -= y_denominator; } } break; }}#if MW_FEATURE_PSDOP_BITMAP_BYTES_LSB_FIRST/* psd->DrawArea operation PSDOP_BITMAP_BYTES_LSB_FIRST which * takes a pixmap, each line is byte aligned, and copies it * to the screen using fg_color and bg_color to replace a 1 * and 0 in the pixmap. This pixmap is ordered the wrong * way around; it has the leftmost pixel (on the screen) in * LSB (Bit 0) of the bytes. * * The reason why this non-intuitive bit ordering is used is * to match the bit ordering used in the T1lib font rendering * library. * * Variables used in the gc: * dstx, dsty, dsth, dstw Destination rectangle * srcx, srcy Source rectangle * src_linelen Linesize in bytes of source * pixels Pixmap data * fg_color Color of a '1' bit * bg_color Color of a '0' bit * gr_usebg If set, bg_color is used. If zero, * then '0' bits are transparent. */static voidlinear32a_drawarea_bitmap_bytes_lsb_first(PSD psd, driver_gc_t * gc){/* * The difference between the MSB_FIRST and LSB_FIRST variants of * this function is simply the definition of these three #defines. * * MWI_IS_BIT_BEFORE_OR_EQUAL(A,B) returns true if bit A is before * (i.e. to the left of) bit B. * MWI_ADVANCE_BIT(X) advances X on to the next bit to the right, * and stores the result back in X. * MWI_BIT_NO(N), where 0<=n<=7, gives the Nth bit, where 0 is the * leftmost bit and 7 is the rightmost bit. This is a constant * iff N is a constant. */#define MWI_IS_BIT_BEFORE_OR_EQUAL(a,b) ((a) <= (b))#define MWI_ADVANCE_BIT(target) ((target) <<= 1)#define MWI_BIT_NO(n) (0x01 << (n))/* * Two convenience defines - these are the same for MSB_FIRST and * LSB_FIRST. */#define MWI_FIRST_BIT MWI_BIT_NO(0)#define MWI_LAST_BIT MWI_BIT_NO(7) unsigned char prefix_first_bit; unsigned char postfix_first_bit = MWI_FIRST_BIT;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -