📄 eap_md5.hxx
字号:
/* BEGIN_COPYRIGHT *//* *//* Open Diameter: Open-source software for the Diameter and *//* Diameter related protocols *//* *//* Copyright (C) 2002-2004 Open Diameter Project *//* *//* This library is free software; you can redistribute it and/or modify *//* it under the terms of the GNU Lesser General Public License as *//* published by the Free Software Foundation; either version 2.1 of the *//* License, or (at your option) any later version. *//* *//* This library is distributed in the hope that it will be useful, *//* but WITHOUT ANY WARRANTY; without even the implied warranty of *//* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU *//* Lesser General Public License for more details. *//* *//* You should have received a copy of the GNU Lesser General Public *//* License along with this library; if not, write to the Free Software *//* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 *//* USA. *//* *//* In addition, when you copy and redistribute some or the entire part of *//* the source code of this software with or without modification, you *//* MUST include this copyright notice in each copy. *//* *//* If you make any changes that are appeared to be useful, please send *//* sources that include the changed part to *//* diameter-developers@lists.sourceforge.net so that we can reflect your *//* changes to one unified version of this software. *//* *//* END_COPYRIGHT */// $Id: eap_md5.hxx,v 1.13 2004/06/17 21:13:36 yohba Exp $// eap_identity.hxx: Identity method state machine// Written by Yoshihiro Ohba#ifndef __EAP_MD5_HXX__#define __EAP_MD5_HXX__#include <ace/Basic_Types.h>#include <openssl/md5.h>#include "eap.hxx"#include "eap_fsm.hxx"#include "eap_authfsm.hxx"#include "eap_peerfsm.hxx"/* MD5-Challenge Request/Response description.In section 5.4 of RFC2284bis:"5.4 MD5-Challenge Description The MD5-Challenge Type is analogous to the PPP CHAP protocol [RFC1994] (with MD5 as the specified algorithm). The Request contains a "challenge" message to the peer. A Response MUST be sent in reply to the Request. The Response MAY be either of Type 4 (MD5-Challenge), Nak (Type 3) or Expanded Nak (Type 254). The Nak reply indicates the peer's desired authentication Type(s). EAP peer and EAP server implementations MUST support the MD5-Challenge mechanism. An authenticator that supports only pass-through MUST allow communication with a backend authentication server that is capable of supporting MD5-Challenge, although the EAP authenticator implementation need not support MD5-Challenge itself. However, if the EAP authenticator can be configured to authenticate peers locally (e.g., not operate in pass-through), then the requirement for support of the MD5-Challenge mechanism applies. Note that the use of the Identifier field in the MD5-Challenge Type is different from that described in [RFC1994]. EAP allows for retransmission of MD5-Challenge Request packets while [RFC1994] states that both the Identifier and Challenge fields MUST change each time a Challenge (the CHAP equivalent of the MD5-Challenge Request packet) is sent. Note: [RFC1994] treats the shared secret as an octet string, and does not specify how it is entered into the system (or if it is handled by the user at all). EAP MD5-Challenge implementations MAY support entering passphrases with non-ASCII characters. See Section 5 for instructions how the input should be processed and encoded into octets. Type 4 Type-Data The contents of the Type-Data field is summarized below. For reference on the use of these fields see the PPP Challenge Handshake Authentication Protocol [RFC1994]. 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Value-Size | Value ... +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Name ... +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+"In section 5 of RFC2284bis: "EAP methods MAY support authentication based on shared secrets. If the shared secret is a passphrase entered by the user, implementations MAY support entering passphrases with non-ASCII characters. In this case, the input should be processed using an appropriate stringprep [RFC3454] profile, and encoded in octets using UTF-8 encoding [RFC2279]. A preliminary version of a possible stringprep profile is described in [SASLPREP]." In section 2.3 of RFC1994:"2.3. Design Requirements The CHAP algorithm requires that the length of the secret MUST be at least 1 octet. The secret SHOULD be at least as large and unguessable as a well-chosen password. It is preferred that the secret be at least the length of the hash value for the hashing algorithm chosen (16 octets for MD5). This is to ensure a sufficiently large range for the secret to provide protection against exhaustive search attacks. The one-way hash algorithm is chosen such that it is computationally infeasible to determine the secret from the known challenge and response values. Each challenge value SHOULD be unique, since repetition of a challenge value in conjunction with the same secret would permit an attacker to reply with a previously intercepted response. Since it is expected that the same secret MAY be used to authenticate with servers in disparate geographic regions, the challenge SHOULD exhibit global and temporal uniqueness. Each challenge value SHOULD also be unpredictable, least an attacker trick a peer into responding to a predicted future challenge, and then use the response to masquerade as that peer to an authenticator. Although protocols such as CHAP are incapable of protecting against realtime active wiretapping attacks, generation of unique unpredictable challenges can protect against a wide range of active attacks. A discussion of sources of uniqueness and probability of divergence is included in the Magic-Number Configuration Option [1]."In section 4 of RFC1994:"4. Packet Format Exactly one Challenge-Handshake Authentication Protocol packet is encapsulated in the Information field of a PPP Data Link Layer frame where the protocol field indicates type hex c223 (Challenge-Handshake Authentication Protocol). A summary of the CHAP packet format is shown below. The fields are transmitted from left to right. +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Code | Identifier | Length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Data ... +-+-+-+-+ Code The Code field is one octet and identifies the type of CHAP packet. CHAP Codes are assigned as follows: 1 Challenge 2 Response 3 Success 4 Failure Identifier The Identifier field is one octet and aids in matching challenges, responses and replies. Length The Length field is two octets and indicates the length of the CHAP packet including the Code, Identifier, Length and Data fields. Octets outside the range of the Length field should be treated as Data Link Layer padding and should be ignored on reception. Data The Data field is zero or more octets. The format of the Data field is determined by the Code field.4.1. Challenge and Response Description The Challenge packet is used to begin the Challenge-Handshake Authentication Protocol. The authenticator MUST transmit a CHAP packet with the Code field set to 1 (Challenge). Additional Challenge packets MUST be sent until a valid Response packet is
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -