⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 barrier.c

📁 mpi并行计算的c++代码 可用vc或gcc编译通过 可以用来搭建并行计算试验环境
💻 C
字号:
/* -*- Mode: C; c-basic-offset:4 ; -*- *//* * *  (C) 2001 by Argonne National Laboratory. *      See COPYRIGHT in top-level directory. */#include "mpiimpl.h"/* -- Begin Profiling Symbol Block for routine MPI_Barrier */#if defined(HAVE_PRAGMA_WEAK)#pragma weak MPI_Barrier = PMPI_Barrier#elif defined(HAVE_PRAGMA_HP_SEC_DEF)#pragma _HP_SECONDARY_DEF PMPI_Barrier  MPI_Barrier#elif defined(HAVE_PRAGMA_CRI_DUP)#pragma _CRI duplicate MPI_Barrier as PMPI_Barrier#endif/* -- End Profiling Symbol Block *//* Define MPICH_MPI_FROM_PMPI if weak symbols are not supported to build   the MPI routines */#ifndef MPICH_MPI_FROM_PMPI#define MPI_Barrier PMPI_Barrier/* This is the default implementation of the barrier operation.  The   algorithm is:      Algorithm: MPI_Barrier   We use the dissemination algorithm described in:   Debra Hensgen, Raphael Finkel, and Udi Manbet, "Two Algorithms for   Barrier Synchronization," International Journal of Parallel   Programming, 17(1):1-17, 1988.     It uses ceiling(lgp) steps. In step k, 0 <= k <= (ceiling(lgp)-1),   process i sends to process (i + 2^k) % p and receives from process    (i - 2^k + p) % p.   Possible improvements:    End Algorithm: MPI_Barrier   This is an intracommunicator barrier only!*//* not declared static because it is called in ch3_comm_connect/accept */int MPIR_Barrier( MPID_Comm *comm_ptr ){    static const char FCNAME[] = "MPIR_Barrier";    int size, rank, src, dst, mask, mpi_errno=MPI_SUCCESS;    MPI_Comm comm;    size = comm_ptr->local_size;    /* Trivial barriers return immediately */    if (size == 1) return MPI_SUCCESS;    rank = comm_ptr->rank;    comm = comm_ptr->handle;    /* Only one collective operation per communicator can be active at any       time */    MPIDU_ERR_CHECK_MULTIPLE_THREADS_ENTER( comm_ptr );    mask = 0x1;    while (mask < size) {        dst = (rank + mask) % size;        src = (rank - mask + size) % size;        mpi_errno = MPIC_Sendrecv(NULL, 0, MPI_BYTE, dst,                                  MPIR_BARRIER_TAG, NULL, 0, MPI_BYTE,                                  src, MPIR_BARRIER_TAG, comm,                                  MPI_STATUS_IGNORE);	/* --BEGIN ERROR HANDLING-- */        if (mpi_errno)	{	    mpi_errno = MPIR_Err_create_code(mpi_errno, MPIR_ERR_RECOVERABLE, FCNAME, __LINE__, MPI_ERR_OTHER, "**fail", 0);	    return mpi_errno;	}	/* --END ERROR HANDLING-- */        mask <<= 1;    }    MPIDU_ERR_CHECK_MULTIPLE_THREADS_EXIT( comm_ptr );    return mpi_errno;}#if 0/* This is the default implementation of the barrier operation.  The   algorithm is:      Algorithm: MPI_Barrier   Find the largest power of two that is less than or equal to the size of    the communicator.  Call tbis twon_within.   Divide the communicator by rank into two groups: those with    rank < twon_within and those with greater rank.  The barrier   executes in three steps.  First, the group with rank >= twon_within   sends to the first (size-twon_within) ranks of the first group.   That group then executes a recursive doubling algorithm for the barrier.   For the third step, the first (size-twon_within) ranks send to the top   group.  This is the same algorithm used in MPICH-1.   Possible improvements:    The upper group could apply recursively this approach to reduce the    total number of messages sent (in the case of of a size of 2^n-1, there    are 2^(n-1) messages sent in the first and third steps).   End Algorithm: MPI_Barrier   This is an intracommunicator barrier only!*/int MPIR_Barrier( MPID_Comm *comm_ptr ){    int size, rank;    int twon_within, n2, remaining, gap, partner;    MPID_Request *request_ptr;    int mpi_errno = MPI_SUCCESS;        size = comm_ptr->remote_size;    rank = comm_ptr->rank;    /* Trivial barriers return immediately */    if (size == 1) return MPI_SUCCESS;    /* Only one collective operation per communicator can be active at any       time */    MPIDU_ERR_CHECK_MULTIPLE_THREADS_ENTER( comm_ptr );        /* Find the twon_within (this could be cached if more routines     need it) */    twon_within = 1;    n2          = 2;    while (n2 <= size) { twon_within = n2; n2 <<= 1; }    remaining = size - twon_within;    if (rank < twon_within) {	/* First step: receive from the upper group */	if (rank < remaining) {	    MPID_Recv( 0, 0, MPI_BYTE, twon_within + rank, MPIR_BARRIER_TAG, 		       comm_ptr, MPID_CONTEXT_INTRA_COLL, MPI_STATUS_IGNORE,		       &request_ptr );	    if (request_ptr) {		mpi_errno = MPIC_Wait(request_ptr);		MPID_Request_release(request_ptr);		/* --BEGIN ERROR HANDLING-- */		if (mpi_errno != MPI_SUCCESS)		{		    goto fn_exit;		}		/* --END ERROR HANDLING-- */	    }	}	/* Second step: recursive doubling exchange */	for (gap=1; gap<twon_within; gap <<= 1) {	    partner = (rank ^ gap);	    MPIC_Sendrecv( 0, 0, MPI_BYTE, partner, MPIR_BARRIER_TAG,			   0, 0, MPI_BYTE, partner, MPIR_BARRIER_TAG,			   comm_ptr->handle, MPI_STATUS_IGNORE );	}	/* Third step: send to the upper group */	if (rank < remaining) {	    MPID_Send( 0, 0, MPI_BYTE, rank + twon_within, MPIR_BARRIER_TAG,		       comm_ptr, MPID_CONTEXT_INTRA_COLL, &request_ptr );	    if (request_ptr) {		mpi_errno = MPIC_Wait(request_ptr);		MPID_Request_release(request_ptr);		/* --BEGIN ERROR HANDLING-- */		if (mpi_errno != MPI_SUCCESS)		{		    goto fn_exit;		}		/* --END ERROR HANDLING-- */	    }	}    }    else {	/* For the upper group, step one is a send */	MPID_Send( 0, 0, MPI_BYTE, rank - twon_within, MPIR_BARRIER_TAG,		   comm_ptr, MPID_CONTEXT_INTRA_COLL, &request_ptr );	if (request_ptr) {	    mpi_errno = MPIC_Wait(request_ptr);	    MPID_Request_release(request_ptr);	    /* --BEGIN ERROR HANDLING-- */	    if (mpi_errno != MPI_SUCCESS)	    {		goto fn_exit;	    }	    /* --END ERROR HANDLING-- */	}	/* There is no second step; for the third step, recv */	MPID_Recv( 0, 0, MPI_BYTE, rank - twon_within, MPIR_BARRIER_TAG, 		   comm_ptr, MPID_CONTEXT_INTRA_COLL, MPI_STATUS_IGNORE,		   &request_ptr );	if (request_ptr) {	    mpi_errno = MPIC_Wait(request_ptr);	    MPID_Request_release(request_ptr);	    /* --BEGIN ERROR HANDLING-- */	    if (mpi_errno != MPI_SUCCESS)	    {		goto fn_exit;	    }	    /* --END ERROR HANDLING-- */	}    }  fn_exit:    MPIDU_ERR_CHECK_MULTIPLE_THREADS_EXIT( comm_ptr );    return mpi_errno;}#endif/* not declared static because a machine-specific function may call this one in some cases */int MPIR_Barrier_inter( MPID_Comm *comm_ptr ){    static const char FCNAME[] = "MPIR_Barrier_inter";    int rank, mpi_errno, i, root;    MPID_Comm *newcomm_ptr = NULL;    rank = comm_ptr->rank;    /* Get the local intracommunicator */    if (!comm_ptr->local_comm)	MPIR_Setup_intercomm_localcomm( comm_ptr );    newcomm_ptr = comm_ptr->local_comm;    /* do a barrier on the local intracommunicator */    mpi_errno = MPIR_Barrier(newcomm_ptr);    /* --BEGIN ERROR HANDLING-- */    if (mpi_errno)    {	mpi_errno = MPIR_Err_create_code(mpi_errno, MPIR_ERR_RECOVERABLE, FCNAME, __LINE__, MPI_ERR_OTHER, "**fail", 0);	return mpi_errno;    }    /* --END ERROR HANDLING-- */    /* rank 0 on each group does an intercommunicator broadcast to the       remote group to indicate that all processes in the local group       have reached the barrier. We do a 1-byte bcast because a 0-byte       bcast will just return without doing anything. */        /* first broadcast from left to right group, then from right to       left group */    if (comm_ptr->is_low_group) {        /* bcast to right*/        root = (rank == 0) ? MPI_ROOT : MPI_PROC_NULL;        mpi_errno = MPIR_Bcast_inter(&i, 1, MPI_BYTE, root, comm_ptr); 	/* --BEGIN ERROR HANDLING-- */        if (mpi_errno)	{	    mpi_errno = MPIR_Err_create_code(mpi_errno, MPIR_ERR_RECOVERABLE, FCNAME, __LINE__, MPI_ERR_OTHER, "**fail", 0);	    return mpi_errno;	}	/* --END ERROR HANDLING-- */        /* receive bcast from right */        root = 0;        mpi_errno = MPIR_Bcast_inter(&i, 1, MPI_BYTE, root, comm_ptr); 	/* --BEGIN ERROR HANDLING-- */        if (mpi_errno)	{	    mpi_errno = MPIR_Err_create_code(mpi_errno, MPIR_ERR_RECOVERABLE, FCNAME, __LINE__, MPI_ERR_OTHER, "**fail", 0);	    return mpi_errno;	}	/* --END ERROR HANDLING-- */    }    else {        /* receive bcast from left */        root = 0;        mpi_errno = MPIR_Bcast_inter(&i, 1, MPI_BYTE, root, comm_ptr); 	/* --BEGIN ERROR HANDLING-- */        if (mpi_errno)	{	    mpi_errno = MPIR_Err_create_code(mpi_errno, MPIR_ERR_RECOVERABLE, FCNAME, __LINE__, MPI_ERR_OTHER, "**fail", 0);	    return mpi_errno;	}	/* --END ERROR HANDLING-- */        /* bcast to left */        root = (rank == 0) ? MPI_ROOT : MPI_PROC_NULL;        mpi_errno = MPIR_Bcast_inter(&i, 1, MPI_BYTE, root, comm_ptr);  	/* --BEGIN ERROR HANDLING-- */        if (mpi_errno)	{	    mpi_errno = MPIR_Err_create_code(mpi_errno, MPIR_ERR_RECOVERABLE, FCNAME, __LINE__, MPI_ERR_OTHER, "**fail", 0);	    return mpi_errno;	}	/* --END ERROR HANDLING-- */    }    return mpi_errno;}#endif#undef FUNCNAME#define FUNCNAME MPI_Barrier/*@MPI_Barrier - Blocks until all processes in the communicator havereached this routine.  Input Parameter:. comm - communicator (handle) Notes:Blocks the caller until all processes in the communicator have called it; that is, the call returns at any process only after all members of thecommunicator have entered the call..N ThreadSafe.N Fortran.N Errors.N MPI_SUCCESS.N MPI_ERR_COMM@*/int MPI_Barrier( MPI_Comm comm ){    static const char FCNAME[] = "MPI_Barrier";    int mpi_errno = MPI_SUCCESS;    MPID_Comm *comm_ptr = NULL;    MPID_MPI_STATE_DECL(MPID_STATE_MPI_BARRIER);    MPIR_ERRTEST_INITIALIZED_ORDIE();        MPID_CS_ENTER();    MPID_MPI_COLL_FUNC_ENTER(MPID_STATE_MPI_BARRIER);        /* Validate parameters, especially handles needing to be converted */#   ifdef HAVE_ERROR_CHECKING    {        MPID_BEGIN_ERROR_CHECKS;        {	    MPIR_ERRTEST_COMM(comm, mpi_errno);            if (mpi_errno != MPI_SUCCESS) goto fn_fail;	}        MPID_END_ERROR_CHECKS;    }#   endif /* HAVE_ERROR_CHECKING */    /* Convert MPI object handles to object pointers */    MPID_Comm_get_ptr( comm, comm_ptr );        /* Validate parameters and objects (post conversion) */#   ifdef HAVE_ERROR_CHECKING    {        MPID_BEGIN_ERROR_CHECKS;        {	    /* Validate communicator */            MPID_Comm_valid_ptr( comm_ptr, mpi_errno );            if (mpi_errno) goto fn_fail;        }        MPID_END_ERROR_CHECKS;    }#   endif /* HAVE_ERROR_CHECKING */    /* ... body of routine ...  */    if (comm_ptr->coll_fns != NULL && comm_ptr->coll_fns->Barrier != NULL)    {	mpi_errno = comm_ptr->coll_fns->Barrier(comm_ptr);    }    else    {        MPIR_Nest_incr();        if (comm_ptr->comm_kind == MPID_INTRACOMM) {	    mpi_errno = MPIR_Barrier( comm_ptr );        }        else {            /* intercommunicator */ 	    /* mpi_errno = MPIR_Err_create_code( MPI_SUCCESS, MPIR_ERR_RECOVERABLE, FCNAME, __LINE__, MPI_ERR_COMM, 					      "**intercommcoll",					      "**intercommcoll %s",                                              FCNAME ); */            mpi_errno = MPIR_Barrier_inter( comm_ptr );	}        MPIR_Nest_decr();    }    /* --BEGIN ERROR HANDLING-- */    if (mpi_errno != MPI_SUCCESS) goto fn_fail;    /* --END ERROR HANDLING-- */    /* ... end of body of routine ... */  fn_exit:    MPID_MPI_COLL_FUNC_EXIT(MPID_STATE_MPI_BARRIER);    MPID_CS_EXIT();    return mpi_errno;  fn_fail:    /* --BEGIN ERROR HANDLING-- */#   ifdef HAVE_ERROR_CHECKING    {	mpi_errno = MPIR_Err_create_code(	    mpi_errno, MPIR_ERR_RECOVERABLE, FCNAME, __LINE__, MPI_ERR_OTHER, "**mpi_barrier", "**mpi_barrier %C", comm);    }#   endif    mpi_errno = MPIR_Err_return_comm( comm_ptr, FCNAME, mpi_errno );    goto fn_exit;    /* --END ERROR HANDLING-- */}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -