📄 quadtree.m
字号:
function [ind,bx,by,Nb,lx,ly] = quadtree(x,y,s,n0)% QUADTREE Recursive division of a 2-dimensional set.% [IND,BX,BY,NB,LX,LY] = QUADTREE(X,Y,S,N0)% Performs recursive tree-like division of a set% of points with coordinates X,Y.% S is binary mask showing which points of a set% are to be counted. N0 is maximum permissible% number of "counted" points in the elementary% block.% Returns vector IND of the same size as X, Y% showing which region each point of a set belongs% to; binary matrices BX, BY where each row shows% "binary address" of each region.% Also returns "Adjacency matrix" NB which is 1 if % i and j regions are neighbours and 0 otherwise;% and matrices of limits for each region, LX and LY% so that PLOT(LX(:,[1 2 2 1 1])',LY(:,[1 1 2 2 1])')% plots the boundaries of all regions.% Copyright (c) 1995 by Kirill K. Pankratov% kirill@plume.mit.edu% 01/30/95 % Default for maximal block size n0_dflt = 10; % Handle input ..............................if nargin < 2 error(' Not enough input arguments.')endif nargin<4, n0 = n0_dflt; endif nargin<3, s = []; endif isempty(s), s = ones(size(x)); end % If no need to divide ......................if length(x(find(s))) <= n0 bx = []; by = []; Nb = []; ind = ones(size(x)); returnend % Calculate limits ................lim = [min(x) max(x) min(y) max(y)]; % Recursively construct quadtree ............[ind,bx,by] = qtree0(x,y,s,lim,n0);bx = bx(:,1:size(bx,2)-1);by = by(:,1:size(by,2)-1); % Compose "adjacency matrix" ................szb = size(bx);ob = ones(1,szb(1));pow = 2.^(0:szb(2)-1);pow = flipud(pow'); % "Lower" and "upper" bounds for treesbxmax = ceil(bx)*pow;bxmin = floor(bx)*pow;bymax = ceil(by)*pow;bymin = floor(by)*pow; % "Physical" limits of each regionslx = [bxmin bxmax+1];ly = [bymin bymax+1];lx = lim(1)+lx*(lim(2)-lim(1))/pow(1)/2;ly = lim(3)+ly*(lim(4)-lim(3))/pow(1)/2;B0 = bxmin(:,ob);B1 = bxmax(:,ob);Nb = (B0'-B1<=1) & (B1'-B0>=-1);B0 = bymin(:,ob);B1 = bymax(:,ob);Nb = Nb & (B0'-B1<=1) & (B1'-B0>=-1);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -