⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 lbn68000.c

📁 包含哈希,对称以及非对称的经典算法 包含经典事例
💻 C
字号:
/* * lbn68000.c - 16-bit bignum primitives for the 68000 (or 68010) processors. * * Copyright (c) 1995  Colin Plumb.  All rights reserved. * For licensing and other legal details, see the file legal.c. * * This was written for Metrowerks C, and while it should be reasonably * portable, NOTE that Metrowerks lets a callee trash a0, a1, d0, d1, and d2. * Some 680x0 compilers make d2 callee-save, so instructions to save it * will have to be added. *  * This code supports 16 or 32-bit ints, based on UINT_MAX. * Regardless of UINT_MAX, only bignums up to 64K words (1 million bits) * are supported.  (68k hackers will recognize this as a consequence of * using dbra.) * * These primitives use little-endian word order. * (The order of bytes within words is irrelevant to this issue.) */#include <limits.h>#include "lbn.h"        /* Should include lbn68000.h *//* * The Metrowerks C compiler (1.2.2) produces bad 68k code for the * following input, which happens to be the inner loop of lbnSub1, * so a few less than critical routines have been recoded in assembly * to avoid the bug.  (Optimizer on or off does not matter.) *  * unsigned * decrement(unsigned *num, unsigned len) * { *      do { *              if ((*num++)-- != 0) *                      return 0; *      } while (--len); *      return 1; * } */asm BNWORD16lbnSub1_16(BNWORD16 *num, unsigned len, BNWORD16 borrow){        movea.l 4(sp),a0        /* num */#if UINT_MAX == 0xffff        move.w  10(sp),d0       /* borrow */#else        move.w  12(sp),d0       /* borrow */#endif        sub.w   d0,(a0)+        bcc             done#if UINT_MAX == 0xffff        move.w  8(sp),d0        /* len */#else        move.w  10(sp),d0       /* len */#endif        subq.w  #2,d0        bcs             doneloop:        subq.w  #1,(a0)+        dbcc    d0,loopdone:        moveq.l #0,d0        addx.w  d0,d0        rts}asm BNWORD16lbnAdd1_16(BNWORD16 *num, unsigned len, BNWORD16 carry){        movea.l 4(sp),a0        /* num */#if UINT_MAX == 0xffff        move.w  10(sp),d0       /* carry */#else        move.w  12(sp),d0       /* carry */#endif        add.w   d0,(a0)+        bcc             done#if UINT_MAX == 0xffff        move.w  8(sp),d0        /* len */#else        move.w  10(sp),d0       /* len */#endif        subq.w  #2,d0        bcs             doneloop:        addq.w  #1,(a0)+        dbcc    d0,loopdone:        moveq.l #0,d0        addx.w  d0,d0        rts}asm voidlbnMulN1_16(BNWORD16 *out, BNWORD16 const *in, unsigned len, BNWORD16 k){        move.w  d3,-(sp)        /* 2 bytes of stack frame */        move.l  2+4(sp),a1      /* out */        move.l  2+8(sp),a0      /* in */#if UINT_MAX == 0xffff        move.w  2+12(sp),d3     /* len */        move.w  2+14(sp),d2     /* k */#else        move.w  2+14(sp),d3     /* len (low 16 bits) */        move.w  2+16(sp),d2     /* k */#endif        move.w  (a0)+,d1        /* First multiply */        mulu.w  d2,d1        move.w  d1,(a1)+        clr.w   d1        swap    d1        subq.w  #1,d3           /* Setup for loop unrolling */        lsr.w   #1,d3        bcs.s   m16_even        beq.s   m16_short                subq.w  #1,d3           /* Set up software pipeline properly */        move.l  d1,d0        m16_loop:        move.w  (a0)+,d1        mulu.w  d2,d1        add.l   d0,d1        move.w  d1,(a1)+        clr.w	d1        swap	d1m16_even:        move.w  (a0)+,d0        mulu.w  d2,d0        add.l   d1,d0        move.w  d0,(a1)+        clr.w   d0        swap    d0        dbra    d3,m16_loop                move.w  d0,(a1)        move.w  (sp)+,d3        rtsm16_short:        move.w  d1,(a1)        move.w  (sp)+,d3        rts}asm BNWORD16lbnMulAdd1_16(BNWORD16 *out, BNWORD16 const *in, unsigned len, BNWORD16 k){        move.w  d4,-(sp)         clr.w   d4        move.w  d3,-(sp)        /* 4 bytes of stack frame */        move.l  4+4(sp),a1      /* out */        move.l  4+8(sp),a0      /* in */#if UINT_MAX == 0xffff        move.w  4+12(sp),d3     /* len */        move.w  4+14(sp),d2     /* k */#else        move.w  4+14(sp),d3     /* len (low 16 bits) */        move.w  4+16(sp),d2     /* k */#endif        move.w  (a0)+,d1        /* First multiply */        mulu.w  d2,d1        add.w   d1,(a1)+        clr.w   d1        swap    d1        addx.w  d4,d1        subq.w  #1,d3           /* Setup for loop unrolling */        lsr.w   #1,d3        bcs.s   ma16_even        beq.s   ma16_short                subq.w  #1,d3           /* Set up software pipeline properly */        move.l  d1,d0        ma16_loop:        move.w  (a0)+,d1        mulu.w  d2,d1        add.l   d0,d1        add.w   d1,(a1)+        clr.w   d1        swap    d1        addx.w  d4,d1ma16_even:        move.w  (a0)+,d0        mulu.w  d2,d0        add.l   d1,d0        add.w   d0,(a1)+        clr.w   d0        swap    d0        addx.w  d4,d0        dbra    d3,ma16_loop                move.w  (sp)+,d3        move.w  (sp)+,d4        rtsma16_short:        move.w  (sp)+,d3        move.l  d1,d0           move.w  (sp)+,d4        rts}asm BNWORD16lbnMulSub1_16(BNWORD16 *out, BNWORD16 const *in, unsigned len, BNWORD16 k){        move.w  d4,-(sp)         clr.w   d4        move.w  d3,-(sp)        /* 4 bytes of stack frame */        move.l  4+4(sp),a1      /* out */        move.l  4+8(sp),a0      /* in */#if UINT_MAX == 0xffff        move.w  4+12(sp),d3     /* len */        move.w  4+14(sp),d2     /* k */#else        move.w  4+14(sp),d3     /* len (low 16 bits) */        move.w  4+16(sp),d2     /* k */#endif        move.w  (a0)+,d1        /* First multiply */        mulu.w  d2,d1        sub.w   d1,(a1)+        clr.w   d1        swap    d1        addx.w  d4,d1        subq.w  #1,d3           /* Setup for loop unrolling */        lsr.w   #1,d3        bcs.s   ms16_even        beq.s   ms16_short                subq.w  #1,d3           /* Set up software pipeline properly */        move.l  d1,d0        ms16_loop:        move.w  (a0)+,d1        mulu.w  d2,d1        add.l   d0,d1        sub.w   d1,(a1)+        clr.w   d1        swap    d1        addx.w  d4,d1ms16_even:        move.w  (a0)+,d0        mulu.w  d2,d0        add.l   d1,d0        sub.w   d0,(a1)+        clr.w   d0        swap    d0        addx.w  d4,d0        dbra    d3,ms16_loop                move.w  (sp)+,d3        move.w  (sp)+,d4        rtsms16_short:        move.w  (sp)+,d3        move.l  d1,d0           move.w  (sp)+,d4        rts}/* The generic long/short divide doesn't know that nh < d */asm BNWORD16lbnDiv21_16(BNWORD16 *q, BNWORD16 nh, BNWORD16 nl, BNWORD16 d){        move.l  8(sp),d0		/* nh *and* nl */        divu.w	12(sp),d0        move.l	4(sp),a0        move.w	d0,(a0)        clr.w	d0        swap	d0        rts}asm unsignedlbnModQ_16(BNWORD16 const *n, unsigned len, BNWORD16 d){        move.l  4(sp),a0        /* n */        moveq.l	#0,d1#if UINT_MAX == 0xffff        move.w  8(sp),d1        /* len */        move.w  10(sp),d2       /* d */#else        move.w  10(sp),d1       /* len (low 16 bits) */        move.w  12(sp),d2       /* d */#endif		add.l	d1,a0		add.l	d1,a0			/* n += len */		moveq.l	#0,d0        subq.w  #1,d1mq16_loop:        move.w  -(a0),d0		/* Assemble remainder and new word */        divu.w  d2,d0        	/* Put remainder in high half of d0 */        dbra    d1,mq16_loop                            mq16_done:        clr.w   d0        swap    d0        rts}/* * Detect if this is a 32-bit processor (68020+ *or* CPU32). * Both the 68020+ and CPU32 processors (which have 32x32->64-bit * multiply, what the 32-bit math library wants) support scaled indexed * addressing.  The 68000 and 68010 ignore the scale selection * bits, treating it as *1 all the time.  So a 32-bit processor * will evaluate -2(a0,a0.w*2) as 1+1*2-2 = 1. * A 16-bit processor will compute 1+1-2 = 0. * * Thus, the return value will indicate whether the chip this is * running on supports 32x32->64-bit multiply (mulu.l). */asm intis68020(void){        machine 68020        lea     1,a0#if 0        lea     -2(a0,a0.w*2),a0	/* Metrowerks won't assemble this, arrgh */#else        dc.w    0x41f0, 0x82fe#endif        move.l	a0,d0        rts}/* * Since I had to hand-assemble that fancy addressing mode, I had to study * up on 680x0 addressing modes. * A summary of 680x0 addressing modes. * A 68000 effective address specifies an operand on an instruction, which * may be a register or in memory.  It is made up of a 3-bit mode and a * 3-bit register specifier.  The meanings of the various modes are: * * 000 reg - Dn, n specified by "reg" * 001 reg - An, n specified by "reg" * 010 reg - (An) * 011 reg - (An)+ * 100 reg - -(An) * 101 reg - d16(An), one 16-bit displacement word follows, sign-extended * 110 reg - Fancy addressing mode off of An, see extension word below * 111 000 - abs.W, one 16-bit signed absolute address follows * 111 001 - abs.L, one 32-bit absolute address follows * 111 010 - d16(PC), one 16-bit displacemnt word follows, sign-extended * 111 011 - Fancy addressing mode off of PC, see extension word below * 111 100 - #immediate, followed by 16 or 32 bits of immediate value * 111 101 - unused, reserved * 111 110 - unused, reserved * 111 111 - unused, reserved * * Memory references are to data space, except that PC-relative references * are to program space, and are read-only. * * Fancy addressing modes are followed by a 16-bit extension word, and come * in "brief" and "full" forms. * The "brief" form looks like this.  Bit 8 is 0 to indicate this form: * * 1   1   1   1   1   1   1   * 6   5   4   3   2   1   0   9   8   7   6   5   4   3   2   1   0 * +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ * |A/D|  register |L/W| scale | 0 |   8-bit signed displacement   | * +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ * * The basic effective address specifies a 32-bit base register - A0 through * A7 or PC (the address of the following instruction). * The A/D and register fields specify an index register.  A/D is 1 for * address registers, and 0 for data registers.  L/W specifies the length * of the index register, 1 for 32 bits, and 0 for 16 bits (sign-extended). * The scale field is a left shift amount (0 to 3 bits) to apply to the * sign-extended index register.  The final address is d8(An,Rn.X*SCALE), * also written (d8,An,Rn.X*SCALE).  X is "W" or "L", SCALE is 1, 2, 4 or 8. * "*1" may be omitted, as may a d8 of 0. * * The 68000 supports this form, but only with a scale field of 0. * It does NOT (says the MC68030 User's Manual MC68030UM/AD, section 2.7) * decode the scale field and the following format bit.  They are treated * as 0. * I recall (I don't have the data book handy) that the CPU32 processor * core used in the 683xx series processors supports variable scales, * but only the brief extension word form.  I suspect it decodes the * format bit and traps if it is not zero, but I don't recall. * * The "full" form (680x0, x >= 2 processors only) looks like this:  * * 1   1   1   1   1   1   1   * 6   5   4   3   2   1   0   9   8   7   6   5   4   3   2   1   0 * +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ * |A/D|  register |L/W| scale | 1 | BS| IS|BD size| 0 | P |OD size| * +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ * * The first 8 bits are interpreted the same way as in the brief form, * except that bit 8 is set to 1 to indicate the full form. * BS, Base Suppress, if set, causes a value of 0 to be used in place of * the base register value.  If this is set, the base register * specified is irrelevant, except that if it is the PC, the fetch is * still done from program space.  The specifier "ZPC" can be used in * place of "PC" in the effective address mnemonic to represent this * case. * IS, Index Suppress, if set, causes a value of 0 to be used in place * of the scaled index register. In this case, the first 7 bits of the * extension word are irrelevant. * BD size specifies the base displacement size.  A value of 00 * in this field is illegal, while 01, 10 and 11 indicate that the * extension word is followed by 0, 1 or 2 16-bit words of base displacement * (zero, sign-extended to 32 bits, and most-significant word first, * respectively) to add to the base register value. * Bit 3 is unused. * The P bit is the pre/post indexing bit, and only applies if an outer * displacement is used.  This is explained later. * OD size specifies the size of an outer displacement.  In the simple * case, this field is set to 00 and the effective address is * (disp,An,Rn.X*SCALE) or (disp,PC,Rn.X*SCALE). * In this case the P bit must be 0.  Any of those compnents may be * suppressed, with a BD size of 01, the BS bit, or the IS bit. * If the OD size is not 00, it encodes an outer displacement in the same * manner as the BD size, and 0, 1 or 2 16-bit words of outer displacement * follow the base displacement in the instruction stream.  In this case, * this is a double-indirect addressing mode.  The base, base displacement, * and possibly the index, specify a 32-bit memory word which holds a value * which is fetched, and the outer displacement and possibly the index are * added to produce the address of the operand. * If the P bit is 0, this is pre-indexed, and the index value is added * before the fetch of the indirect word, producing an effective address * of ([disp,An,Rn.X*SCALE],disp).  If the P bit is 1, the post-indexed case, * the memory word is fectched from base+base displacement, then the index * and outer displacement are added to compute the address of the operand. * This effective address is written ([disp,An],Rn.X*SCALE,disp). * (In both cases, "An" may also be "PC" or "ZPC".) * Any of the components may be omitted.  If the index is omitted (using the * IS bit), the P bit is irrelevant, but must be written as 0. * Thus, legal combinations of IS, P and OD size are: * 0 0 00 - (disp,An,Rn.X*SCALE), also written disp(An,Rn.X*SCALE) * 0 0 01 - ([disp,An,Rn.X*SCALE]) * 0 0 10 - ([disp,An,Rn.X*SCALE],d16) * 0 0 11 - ([disp,An,Rn.X*SCALE],d32) * 0 1 01 - ([disp,An],Rn.X*SCALE) * 0 1 10 - ([disp,An],Rn.X*SCALE,d16) * 0 1 11 - ([disp,An],Rn.X*SCALE,d32) * 1 0 00 - (disp,An), also written disp(An) * 1 0 01 - ([disp,An]) * 1 0 10 - ([disp,An],d16) * 1 0 11 - ([disp,An],d32) */ /* 45678901234567890123456789012345678901234567890123456789012345678901234567 */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -