⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 stm32f10x_tim.c

📁 STM32正交编码器完整程序
💻 C
📖 第 1 页 / 共 5 页
字号:
/**
  ******************************************************************************
  * @file    stm32f10x_tim.c
  * @author  MCD Application Team
  * @version V3.5.0
  * @date    11-March-2011
  * @brief   This file provides all the TIM firmware functions.
  ******************************************************************************
  * @attention
  *
  * THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
  * WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE
  * TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY
  * DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING
  * FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE
  * CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
  *
  * <h2><center>&copy; COPYRIGHT 2011 STMicroelectronics</center></h2>
  ******************************************************************************
  */

/* Includes ------------------------------------------------------------------*/
#include "stm32f10x_tim.h"
#include "stm32f10x_rcc.h"

/** @addtogroup STM32F10x_StdPeriph_Driver
  * @{
  */

/** @defgroup TIM 
  * @brief TIM driver modules
  * @{
  */

/** @defgroup TIM_Private_TypesDefinitions
  * @{
  */

/**
  * @}
  */

/** @defgroup TIM_Private_Defines
  * @{
  */

/* ---------------------- TIM registers bit mask ------------------------ */
#define SMCR_ETR_Mask               ((uint16_t)0x00FF) 
#define CCMR_Offset                 ((uint16_t)0x0018)
#define CCER_CCE_Set                ((uint16_t)0x0001)  
#define	CCER_CCNE_Set               ((uint16_t)0x0004) 

/**
  * @}
  */

/** @defgroup TIM_Private_Macros
  * @{
  */

/**
  * @}
  */

/** @defgroup TIM_Private_Variables
  * @{
  */

/**
  * @}
  */

/** @defgroup TIM_Private_FunctionPrototypes
  * @{
  */

static void TI1_Config(TIM_TypeDef* TIMx, uint16_t TIM_ICPolarity, uint16_t TIM_ICSelection,
                       uint16_t TIM_ICFilter);
static void TI2_Config(TIM_TypeDef* TIMx, uint16_t TIM_ICPolarity, uint16_t TIM_ICSelection,
                       uint16_t TIM_ICFilter);
static void TI3_Config(TIM_TypeDef* TIMx, uint16_t TIM_ICPolarity, uint16_t TIM_ICSelection,
                       uint16_t TIM_ICFilter);
static void TI4_Config(TIM_TypeDef* TIMx, uint16_t TIM_ICPolarity, uint16_t TIM_ICSelection,
                       uint16_t TIM_ICFilter);
/**
  * @}
  */

/** @defgroup TIM_Private_Macros
  * @{
  */

/**
  * @}
  */

/** @defgroup TIM_Private_Variables
  * @{
  */

/**
  * @}
  */

/** @defgroup TIM_Private_FunctionPrototypes
  * @{
  */

/**
  * @}
  */

/** @defgroup TIM_Private_Functions
  * @{
  */

/**
  * @brief  Deinitializes the TIMx peripheral registers to their default reset values.
  * @param  TIMx: where x can be 1 to 17 to select the TIM peripheral.
  * @retval None
  */
void TIM_DeInit(TIM_TypeDef* TIMx)
{
  /* Check the parameters */
  assert_param(IS_TIM_ALL_PERIPH(TIMx)); 
 
  if (TIMx == TIM1)
  {
    RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM1, ENABLE);
    RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM1, DISABLE);  
  }     
  else if (TIMx == TIM2)
  {
    RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM2, ENABLE);
    RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM2, DISABLE);
  }
  else if (TIMx == TIM3)
  {
    RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM3, ENABLE);
    RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM3, DISABLE);
  }
  else if (TIMx == TIM4)
  {
    RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM4, ENABLE);
    RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM4, DISABLE);
  } 
  else if (TIMx == TIM5)
  {
    RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM5, ENABLE);
    RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM5, DISABLE);
  } 
  else if (TIMx == TIM6)
  {
    RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM6, ENABLE);
    RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM6, DISABLE);
  } 
  else if (TIMx == TIM7)
  {
    RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM7, ENABLE);
    RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM7, DISABLE);
  } 
  else if (TIMx == TIM8)
  {
    RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM8, ENABLE);
    RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM8, DISABLE);
  }
  else if (TIMx == TIM9)
  {      
    RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM9, ENABLE);
    RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM9, DISABLE);  
   }  
  else if (TIMx == TIM10)
  {      
    RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM10, ENABLE);
    RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM10, DISABLE);  
  }  
  else if (TIMx == TIM11) 
  {     
    RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM11, ENABLE);
    RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM11, DISABLE);  
  }  
  else if (TIMx == TIM12)
  {      
    RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM12, ENABLE);
    RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM12, DISABLE);  
  }  
  else if (TIMx == TIM13) 
  {       
    RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM13, ENABLE);
    RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM13, DISABLE);  
  }
  else if (TIMx == TIM14) 
  {       
    RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM14, ENABLE);
    RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM14, DISABLE);  
  }        
  else if (TIMx == TIM15)
  {
    RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM15, ENABLE);
    RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM15, DISABLE);
  } 
  else if (TIMx == TIM16)
  {
    RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM16, ENABLE);
    RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM16, DISABLE);
  } 
  else
  {
    if (TIMx == TIM17)
    {
      RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM17, ENABLE);
      RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM17, DISABLE);
    }  
  }
}

/**
  * @brief  Initializes the TIMx Time Base Unit peripheral according to 
  *         the specified parameters in the TIM_TimeBaseInitStruct.
  * @param  TIMx: where x can be 1 to 17 to select the TIM peripheral.
  * @param  TIM_TimeBaseInitStruct: pointer to a TIM_TimeBaseInitTypeDef
  *         structure that contains the configuration information for the 
  *         specified TIM peripheral.
  * @retval None
  */
void TIM_TimeBaseInit(TIM_TypeDef* TIMx, TIM_TimeBaseInitTypeDef* TIM_TimeBaseInitStruct)
{
  uint16_t tmpcr1 = 0;

  /* Check the parameters */
  assert_param(IS_TIM_ALL_PERIPH(TIMx)); 
  assert_param(IS_TIM_COUNTER_MODE(TIM_TimeBaseInitStruct->TIM_CounterMode));
  assert_param(IS_TIM_CKD_DIV(TIM_TimeBaseInitStruct->TIM_ClockDivision));

  tmpcr1 = TIMx->CR1;  

  if((TIMx == TIM1) || (TIMx == TIM8)|| (TIMx == TIM2) || (TIMx == TIM3)||
     (TIMx == TIM4) || (TIMx == TIM5)) 
  {
    /* Select the Counter Mode */
    tmpcr1 &= (uint16_t)(~((uint16_t)(TIM_CR1_DIR | TIM_CR1_CMS)));
    tmpcr1 |= (uint32_t)TIM_TimeBaseInitStruct->TIM_CounterMode;
  }
 
  if((TIMx != TIM6) && (TIMx != TIM7))
  {
    /* Set the clock division */
    tmpcr1 &= (uint16_t)(~((uint16_t)TIM_CR1_CKD));
    tmpcr1 |= (uint32_t)TIM_TimeBaseInitStruct->TIM_ClockDivision;
  }

  TIMx->CR1 = tmpcr1;

  /* Set the Autoreload value */
  TIMx->ARR = TIM_TimeBaseInitStruct->TIM_Period ;
 
  /* Set the Prescaler value */
  TIMx->PSC = TIM_TimeBaseInitStruct->TIM_Prescaler;
    
  if ((TIMx == TIM1) || (TIMx == TIM8)|| (TIMx == TIM15)|| (TIMx == TIM16) || (TIMx == TIM17))  
  {
    /* Set the Repetition Counter value */
    TIMx->RCR = TIM_TimeBaseInitStruct->TIM_RepetitionCounter;
  }

  /* Generate an update event to reload the Prescaler and the Repetition counter
     values immediately */
  TIMx->EGR = TIM_PSCReloadMode_Immediate;           
}

/**
  * @brief  Initializes the TIMx Channel1 according to the specified
  *         parameters in the TIM_OCInitStruct.
  * @param  TIMx: where x can be  1 to 17 except 6 and 7 to select the TIM peripheral.
  * @param  TIM_OCInitStruct: pointer to a TIM_OCInitTypeDef structure
  *         that contains the configuration information for the specified TIM peripheral.
  * @retval None
  */
void TIM_OC1Init(TIM_TypeDef* TIMx, TIM_OCInitTypeDef* TIM_OCInitStruct)
{
  uint16_t tmpccmrx = 0, tmpccer = 0, tmpcr2 = 0;
   
  /* Check the parameters */
  assert_param(IS_TIM_LIST8_PERIPH(TIMx));
  assert_param(IS_TIM_OC_MODE(TIM_OCInitStruct->TIM_OCMode));
  assert_param(IS_TIM_OUTPUT_STATE(TIM_OCInitStruct->TIM_OutputState));
  assert_param(IS_TIM_OC_POLARITY(TIM_OCInitStruct->TIM_OCPolarity));   
 /* Disable the Channel 1: Reset the CC1E Bit */
  TIMx->CCER &= (uint16_t)(~(uint16_t)TIM_CCER_CC1E);
  /* Get the TIMx CCER register value */
  tmpccer = TIMx->CCER;
  /* Get the TIMx CR2 register value */
  tmpcr2 =  TIMx->CR2;
  
  /* Get the TIMx CCMR1 register value */
  tmpccmrx = TIMx->CCMR1;
    
  /* Reset the Output Compare Mode Bits */
  tmpccmrx &= (uint16_t)(~((uint16_t)TIM_CCMR1_OC1M));
  tmpccmrx &= (uint16_t)(~((uint16_t)TIM_CCMR1_CC1S));

  /* Select the Output Compare Mode */
  tmpccmrx |= TIM_OCInitStruct->TIM_OCMode;
  
  /* Reset the Output Polarity level */
  tmpccer &= (uint16_t)(~((uint16_t)TIM_CCER_CC1P));
  /* Set the Output Compare Polarity */
  tmpccer |= TIM_OCInitStruct->TIM_OCPolarity;
  
  /* Set the Output State */
  tmpccer |= TIM_OCInitStruct->TIM_OutputState;
    
  if((TIMx == TIM1) || (TIMx == TIM8)|| (TIMx == TIM15)||
     (TIMx == TIM16)|| (TIMx == TIM17))
  {
    assert_param(IS_TIM_OUTPUTN_STATE(TIM_OCInitStruct->TIM_OutputNState));
    assert_param(IS_TIM_OCN_POLARITY(TIM_OCInitStruct->TIM_OCNPolarity));
    assert_param(IS_TIM_OCNIDLE_STATE(TIM_OCInitStruct->TIM_OCNIdleState));
    assert_param(IS_TIM_OCIDLE_STATE(TIM_OCInitStruct->TIM_OCIdleState));
    
    /* Reset the Output N Polarity level */
    tmpccer &= (uint16_t)(~((uint16_t)TIM_CCER_CC1NP));
    /* Set the Output N Polarity */
    tmpccer |= TIM_OCInitStruct->TIM_OCNPolarity;
    
    /* Reset the Output N State */
    tmpccer &= (uint16_t)(~((uint16_t)TIM_CCER_CC1NE));    
    /* Set the Output N State */
    tmpccer |= TIM_OCInitStruct->TIM_OutputNState;
    
    /* Reset the Output Compare and Output Compare N IDLE State */
    tmpcr2 &= (uint16_t)(~((uint16_t)TIM_CR2_OIS1));
    tmpcr2 &= (uint16_t)(~((uint16_t)TIM_CR2_OIS1N));
    
    /* Set the Output Idle state */
    tmpcr2 |= TIM_OCInitStruct->TIM_OCIdleState;
    /* Set the Output N Idle state */
    tmpcr2 |= TIM_OCInitStruct->TIM_OCNIdleState;
  }
  /* Write to TIMx CR2 */
  TIMx->CR2 = tmpcr2;
  
  /* Write to TIMx CCMR1 */
  TIMx->CCMR1 = tmpccmrx;

  /* Set the Capture Compare Register value */
  TIMx->CCR1 = TIM_OCInitStruct->TIM_Pulse; 
 

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -