📄 page60.html
字号:
means that, given any arbitrary positive value <IMG WIDTH=6 HEIGHT=7 ALIGN=BOTTOM ALT="tex2html_wrap_inline59319" SRC="img299.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img299.gif" >,
it is possible to find a value <IMG WIDTH=16 HEIGHT=15 ALIGN=MIDDLE ALT="tex2html_wrap_inline59043" SRC="img238.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img238.gif" >
such that for all <IMG WIDTH=46 HEIGHT=23 ALIGN=MIDDLE ALT="tex2html_wrap_inline59075" SRC="img242.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img242.gif" >
<P> <IMG WIDTH=305 HEIGHT=40 ALIGN=BOTTOM ALT="displaymath59217" SRC="img300.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img300.gif" ><P>
<P>
Thus, if we chose a particular value, say <IMG WIDTH=13 HEIGHT=15 ALIGN=MIDDLE ALT="tex2html_wrap_inline59325" SRC="img301.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img301.gif" >,
then there exists a corresponding <IMG WIDTH=16 HEIGHT=15 ALIGN=MIDDLE ALT="tex2html_wrap_inline59043" SRC="img238.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img238.gif" > such that
<P> <IMG WIDTH=500 HEIGHT=105 ALIGN=BOTTOM ALT="eqnarray1426" SRC="img302.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img302.gif" ><P>
<P>
Consider the sum <IMG WIDTH=144 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline59305" SRC="img294.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img294.gif" >:
<P> <IMG WIDTH=500 HEIGHT=87 ALIGN=BOTTOM ALT="eqnarray1430" SRC="img303.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img303.gif" ><P>
where <IMG WIDTH=138 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline59331" SRC="img304.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img304.gif" >.
Thus, <IMG WIDTH=113 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline59317" SRC="img297.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img297.gif" >.
<P>
Consider a pair of functions <IMG WIDTH=35 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline59231" SRC="img267.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img267.gif" > and <IMG WIDTH=35 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline59233" SRC="img268.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img268.gif" >,
which are known to be <IMG WIDTH=60 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline59279" SRC="img285.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img285.gif" > and <IMG WIDTH=59 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline59281" SRC="img286.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img286.gif" >, respectively.
According to Theorem <A HREF="page60.html#theoremi" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/page60.html#theoremi"><IMG ALIGN=BOTTOM ALT="gif" SRC="cross_ref_motif.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/icons/cross_ref_motif.gif"></A>,
the sum <IMG WIDTH=144 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline59305" SRC="img294.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img294.gif" > is <IMG WIDTH=146 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline59285" SRC="img287.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img287.gif" >.
However, Theorem <A HREF="page60.html#theoremii" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/page60.html#theoremii"><IMG ALIGN=BOTTOM ALT="gif" SRC="cross_ref_motif.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/icons/cross_ref_motif.gif"></A> says that,
if <IMG WIDTH=140 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline59347" SRC="img305.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img305.gif" > exists,
then the sum <I>f</I>(<I>n</I>) is simply <IMG WIDTH=60 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline59351" SRC="img306.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img306.gif" > which,
by the transitive property (see Theorem <A HREF="page60.html#theoremv" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/page60.html#theoremv"><IMG ALIGN=BOTTOM ALT="gif" SRC="cross_ref_motif.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/icons/cross_ref_motif.gif"></A> below), is <IMG WIDTH=60 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline59279" SRC="img285.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img285.gif" >.
<P>
In other words, if the ratio <IMG WIDTH=80 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline59355" SRC="img307.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img307.gif" >
asymptotically approaches a constant as <I>n</I> gets large,
we can say that <IMG WIDTH=91 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline59269" SRC="img282.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img282.gif" > is <IMG WIDTH=60 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline59279" SRC="img285.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img285.gif" >,
which is often a lot simpler than <IMG WIDTH=146 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline59285" SRC="img287.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img287.gif" >.
<P>
Theorem <A HREF="page60.html#theoremii" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/page60.html#theoremii"><IMG ALIGN=BOTTOM ALT="gif" SRC="cross_ref_motif.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/icons/cross_ref_motif.gif"></A> is particularly useful result.
Consider <IMG WIDTH=72 HEIGHT=25 ALIGN=MIDDLE ALT="tex2html_wrap_inline59365" SRC="img308.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img308.gif" > and <IMG WIDTH=72 HEIGHT=25 ALIGN=MIDDLE ALT="tex2html_wrap_inline59177" SRC="img260.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img260.gif" >.
<P> <IMG WIDTH=500 HEIGHT=95 ALIGN=BOTTOM ALT="eqnarray1437" SRC="img309.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img309.gif" ><P>
From this we can conclude that <IMG WIDTH=228 HEIGHT=25 ALIGN=MIDDLE ALT="tex2html_wrap_inline59369" SRC="img310.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img310.gif" >.
Thus, Theorem <A HREF="page60.html#theoremii" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/page60.html#theoremii"><IMG ALIGN=BOTTOM ALT="gif" SRC="cross_ref_motif.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/icons/cross_ref_motif.gif"></A> suggests that
the sum of a series of powers of <I>n</I> is <IMG WIDTH=45 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline59373" SRC="img311.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img311.gif" >,
where <I>m</I> is the largest power of <I>n</I> in the summation.
We will confirm this result in Section <A HREF="page61.html#secasymptoticpolyi" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/page61.html#secasymptoticpolyi"><IMG ALIGN=BOTTOM ALT="gif" SRC="cross_ref_motif.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/icons/cross_ref_motif.gif"></A> below.
<P>
The next theorem addresses the asymptotic behavior
of the product of two functions whose asymptotic behaviors are known:
<P>
<BLOCKQUOTE> <b>Theorem</b><A NAME="theoremiii"> </A>
If <IMG WIDTH=118 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline59227" SRC="img265.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img265.gif" > and <IMG WIDTH=117 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline59229" SRC="img266.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img266.gif" >, then
<P> <IMG WIDTH=367 HEIGHT=16 ALIGN=BOTTOM ALT="displaymath59218" SRC="img312.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img312.gif" ><P></BLOCKQUOTE>
<P>
extbfProof
By Definition <A HREF="page57.html#defnbigoh" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/page57.html#defnbigoh"><IMG ALIGN=BOTTOM ALT="gif" SRC="cross_ref_motif.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/icons/cross_ref_motif.gif"></A>, there exist two integers, <IMG WIDTH=16 HEIGHT=15 ALIGN=MIDDLE ALT="tex2html_wrap_inline59249" SRC="img272.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img272.gif" > and <IMG WIDTH=16 HEIGHT=15 ALIGN=MIDDLE ALT="tex2html_wrap_inline59251" SRC="img273.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img273.gif" >
and two constants <IMG WIDTH=13 HEIGHT=15 ALIGN=MIDDLE ALT="tex2html_wrap_inline59253" SRC="img274.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img274.gif" > and <IMG WIDTH=13 HEIGHT=15 ALIGN=MIDDLE ALT="tex2html_wrap_inline59255" SRC="img275.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img275.gif" > such that
<IMG WIDTH=107 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline59257" SRC="img276.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img276.gif" > for <IMG WIDTH=47 HEIGHT=23 ALIGN=MIDDLE ALT="tex2html_wrap_inline59259" SRC="img277.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img277.gif" > and
<IMG WIDTH=107 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline59261" SRC="img278.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img278.gif" > for <IMG WIDTH=47 HEIGHT=23 ALIGN=MIDDLE ALT="tex2html_wrap_inline59263" SRC="img279.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img279.gif" >.
Furthermore, by Definition <A HREF="page57.html#defnbigoh" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/page57.html#defnbigoh"><IMG ALIGN=BOTTOM ALT="gif" SRC="cross_ref_motif.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/icons/cross_ref_motif.gif"></A>,
<IMG WIDTH=35 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline59231" SRC="img267.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img267.gif" > and <IMG WIDTH=35 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline59233" SRC="img268.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img268.gif" > are both non-negative for all integers <IMG WIDTH=38 HEIGHT=25 ALIGN=MIDDLE ALT="tex2html_wrap_inline59063" SRC="img241.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img241.gif" >.
<P>
Let <IMG WIDTH=119 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline59265" SRC="img280.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img280.gif" > and <IMG WIDTH=63 HEIGHT=15 ALIGN=MIDDLE ALT="tex2html_wrap_inline59407" SRC="img313.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img313.gif" >.
Consider the product <IMG WIDTH=91 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline59409" SRC="img314.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img314.gif" > for <IMG WIDTH=46 HEIGHT=23 ALIGN=MIDDLE ALT="tex2html_wrap_inline59075" SRC="img242.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img242.gif" >:
<P> <IMG WIDTH=500 HEIGHT=39 ALIGN=BOTTOM ALT="eqnarray1455" SRC="img315.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img315.gif" ><P>
Thus, <IMG WIDTH=230 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline59413" SRC="img316.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img316.gif" >.
<P>
Theorem <A HREF="page60.html#theoremiii" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/page60.html#theoremiii"><IMG ALIGN=BOTTOM ALT="gif" SRC="cross_ref_motif.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/icons/cross_ref_motif.gif"></A> describes a simple,
but extremely useful property of big oh.
Consider the functions <IMG WIDTH=228 HEIGHT=25 ALIGN=MIDDLE ALT="tex2html_wrap_inline59415" SRC="img317.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img317.gif" > and
<IMG WIDTH=192 HEIGHT=25 ALIGN=MIDDLE ALT="tex2html_wrap_inline59417" SRC="img318.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img318.gif" >.
By Theorem <A HREF="page60.html#theoremiii" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/page60.html#theoremiii"><IMG ALIGN=BOTTOM ALT="gif" SRC="cross_ref_motif.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/icons/cross_ref_motif.gif"></A>,
the asymptotic behavior of the product <IMG WIDTH=91 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline59409" SRC="img314.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img314.gif" >
is <IMG WIDTH=139 HEIGHT=25 ALIGN=MIDDLE ALT="tex2html_wrap_inline59421" SRC="img319.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img319.gif" >.
I.e., we are able to determine the asymptotic behavior of
the product without having to go through the gory details of
calculating that <IMG WIDTH=326 HEIGHT=25 ALIGN=MIDDLE ALT="tex2html_wrap_inline59423" SRC="img320.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img320.gif" >.
<P>
The next theorem is closely related to the preceding one
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -